Quote to Note: NLP and Recipes for Success and Failure
December 11, 2013
I read “Natural language Processing in the Kitchen.” The post was particularly relevant because I had worked through “The Main Trick in Machine Learning.” The essay does an excellent job of explaining coefficients (what I call for ease of recall, “thresholds.”) The idea is that machine learning requires a human to make certain judgments. Autonomy IDOL uses Bayesian methods and the company has for many years urged licensees to “train” the IDOL system. Not only that, successful Bayesian systems, like a young child, have to be prodded or retrained. How much and how often depends on the child. For Bayesian-like systems, the “how often” and “how much” varies by the licensees’ content contexts.
Now back to the Los Angeles Times’ excellent article about indexing and classifying a small set of recipes. Here’s the quote to note:
Computers can really only do so much.
When one jots down the programming and tuning work required to index recipes, keep in mind the “The Main Trick in Machine Learning.” There are three important lessons I draw from the boundary between these two write ups:
- Smart software requires programming and fiddling. At the present time (December 2013), this reality is as it has been for the last 50 years, maybe more.
- The humans fiddling with or setting up the content processing system have to be pretty darned clever. The notion of “user friendliness” is strongly disabused by these two articles. Flashy graphics and marketers’ cooing are not going to cut the mustard or the sirloin steak.
- The properly set up system with filtered information processed without some human intervention hits 98 percent accuracy. The main point is that relevance is a result of humans, software, and consistent, on point content.
How many enterprise search and content processing vendors explain that a failure to put appropriate resources toward the search or content processing implementation guarantees some interesting issues. Among them, systems will routinely deliver results that are not germane to the user’s query.
The roots of dissatisfaction with incumbent search and retrieval systems is not the systems themselves. In my opinion, most are quite similar, differing only in relatively minor details. (For examples of the similarity, review the reports at Xenky’s Vendor Profiles page.)
How many vendors have been excoriated because their customers failed to provide the cash, time, and support necessary to deliver a high-performance system? My hunch is that the vendors are held responsible for failures that are predestined by licensees’ desire to get the best deal possible and believe that magic just happens without the difficult, human-centric work that is absolutely essential for success.
Stephen E Arnold, December 11, 2013