Algorithmic Bias and the Unintentional Discrimination in the Results

October 21, 2015

The article titled When Big Data Becomes Bad Data on Tech In America discusses the legal ramifications of relying on algorithms for companies. The “disparate impact” theory has been used in the courtroom for some time to ensure that discriminatory policies be struck down whether they were created with the intention to discriminate or not. Algorithmic bias occurs all the time, and according to the spirit of the law, it discriminates although unintentionally. The article states,

“It’s troubling enough when Flickr’s auto-tagging of online photos label pictures of black men as “animal” or “ape,” or when researchers determine that Google search results for black-sounding names are more likely to be accompanied by ads about criminal activity than search results for white-sounding names. But what about when big data is used to determine a person’s credit score, ability to get hired, or even the length of a prison sentence?”

The article also reminds us that data can often be a reflection of “historical or institutional discrimination.” The only thing that matters is whether the results are biased. This is where the question of human bias becomes irrelevant. There are legal scholars and researchers arguing on behalf of ethical machine learning design that roots out algorithmic bias. Stronger regulations and better oversight of the algorithms themselves might be the only way to prevent time in court.

Chelsea Kerwin, October 21, 2015

Sponsored by ArnoldIT.com, publisher of the CyberOSINT monograph

Comments

Comments are closed.

  • Archives

  • Recent Posts

  • Meta