Semantics: Biting the Semantic Apple in the Garden of Search Subsystems

February 8, 2017

I love the Phoenix like behavior of search and content processing subsystems. Consider semantics or figuring out what something is about and assigning an index term to that aboutness. Semantics is not new, and it is not an end in itself. Semantic functions are one of the many Lego blocks which make up a functioning and hopefully semi accurate content processing and information accessing system.

I read “With Better Scaling, Semantic Technology Knocks on Enterprise’s Door.” The headline encapsulates decades of frustration for the champions of semantic solutions. The early bird vendors fouled the nest for later arrivals. As a result, nifty semantic technology makes a sales call and finds that those who bother to attend the presentation are [a] skeptical, [b] indifferent, [c] clueless, [d] unwilling to spend money for another career killer. Pick your answer.

For decades, yes, decades, enterprise search and content processing vendors have said whatever was necessary to close a deal. The operative concept was that the vendor could whip up a solution and everything would come up roses. Well, fly that idea by those who licensed Convera for video search, Fast Search for an intelligent system, or any of the other train wrecks that lie along the information railroad tracks.

This write up happily ignores the past and bets that “better” technology will make semantic functions accurate, easy, low cost, and just plain wonderful. Yep, the Garden of Semantics exists as long as the licensee has the knowledge, money, time, and personnel to deliver the farm fresh produce.

I noted this passage:

… semantics standards came out 15 or more years ago, but scalability has been an inhibitor. Now, the graph technology has taken off. Most of what people have been looking at it for is [online transactional processing]. Our focus has been on [online analytical processing] — using graph technology for analytics. What held graph technology back from doing analytics was the scaling problem. There was promise and hype over those years, but, at every turn, the scale just wasn’t there. You could see amazing things in miniature, but enterprises couldn’t see them at scale. In effect, we have taken our query technology and applied MPP technology to it. Now, we are seeing tremendous scales of data.

Yep, how much does it cost to shove Big Data through a computationally intensive semantic system? Ask a company licensing one of the industrial strength systems like Gotham or NetReveal.

Make sure you have a checkbook with a SPARQL enhanced cover and a matching pen with which to write checks appropriate to semantic processing of large flows of content. Some outfits can do this work and do it well. In my experience, most outfits cannot afford to tackle the job.

That’s why semantic chatter is interesting but often disappointing to those who chomp the semantic apple from the hot house of great search stuff. Don’t forget to gobble some cognitive chilies too.

Stephen E Arnold, February 8, 2017

Comments

Comments are closed.

  • Archives

  • Recent Posts

  • Meta