Big Data, Algorithmic Bias, and Lots of Numbers Will Fix Everything (and Your Check Is in the Mail)

August 20, 2021

We must remember, “The check is in the mail” and “I will always respect you” and “You can trust me.” Ah, great moments in the University of Life’s chapbook of factoids.

I read “Moving Beyond Algorithmic Bias Is a Data Problem”. I was heartened by the essay. First, the document has a document object identifier and a link to make checking updates easy. Very good. Second, the focus of the write up is the inherent problem of most of the Fancy Dan baloney charged big data marketing to which I have been subjected in the last six or seven years. Very, very good.

I noted this statement in the essay:

Why, despite clear evidence to the contrary, does the myth of the impartial model still hold allure for so many within our research community? Algorithms are not impartial, and some design choices are better than others.

Notice the word “myth”. Notice the word “choices.” Yep, so much for the rock solid nature of big data, models, and predictive silliness based on drag-and-drop math functions.

I also starred this important statement by Donald Knuth:

Donald Knuth said that computers do exactly what they are told, no more and no less.

What’s the real world behavior of smart anti-phishing cyber security methods? What about the autonomous technology in some nifty military gear like the Avenger drone?

Google may not be thrilled with the information in this essay nor thrilled about the nailing of the frat bros’ tail to the wall; for example:

The belief that algorithmic bias is a dataset problem invites diffusion of responsibility. It absolves those of us that design and train algorithms from having to care about how our design choices can amplify or curb harm. However, this stance rests on the precarious assumption that bias can be fully addressed in the data pipeline. In a world where our datasets are far from perfect, overall harm is a product of both the data and our model design choices.

Perhaps this explains why certain researchers’ work is not zipping around Silicon Valley at the speed of routine algorithm tweaks? The statement could provide some useful insight into why Facebook does not want pesky researchers at NYU’s Ad Observatory digging into how Facebook manipulates perception and advertisers.

The methods for turning users and advertisers into puppets is not too difficult to figure out. That’s why certain companies obstruct researchers and manufacture baloney, crank up the fog machine, and offer free jargon stew to everyone including researchers. These are the same entities which insist they are not monopolies. Do you believe that these are mom-and-pop shops with a part time mathematician and data wrangler coming in on weekends? Gee, I do.

The “Moving beyond” article ends with a snappy quote:

As Lord Kelvin reflected, “If you cannot measure it, you cannot improve it.”

Several observations are warranted:

  1. More thinking about algorithmic bias is helpful. The task is to get people to understand what’s happening and has been happening for decades.
  2. The interaction of math most people don’t understand and very simple objectives like make more money or advance this agenda is a destabilizing force in human behavior. Need an example. The Taliban and its use of WhatsApp is interesting, is it not?
  3. The fix to the problems associated with commercial companies using algorithms as monetary and social weapons requires control. The question is from whom and how.

Stephen E Arnold, August 20, 2021

Comments

One Response to “Big Data, Algorithmic Bias, and Lots of Numbers Will Fix Everything (and Your Check Is in the Mail)”

  1. More AI Bias? Seems Possible : Stephen E. Arnold @ Beyond Search on September 10th, 2021 5:15 am

    […] bias is a known and devastating problem in several crucial arenas, but recent years have seen efforts to mitigate it with better data sets […]

  • Archives

  • Recent Posts

  • Meta