Featured

Gartner and Enterprise Search 2014

At lunch yesterday, several search aware people discussed a July 2014 Gartner study. One of the folks had a crumpled image of the July 2014 “magic quadrant.” This is, I believe, report number G00260831. Like other mid tier consulting firms, Gartner works hard to find something that will hook customers’ and prospects’ attention. The Gartner approach is focused on companies that purport to have enterprise search systems. From my vantage point, the Gartner approach is miles ahead of the wild and illogical IDC report about knowledge, a “quotient,” and “unlocking” hidden value. See http://bit.ly/1rpQymz. Now I have not fallen in love with Gartner. The situation is more like my finding my content and my name for sale on Amazon. You can see what my attorney complained about via this link, http://bit.ly/1k7HT8k. I think I was “schubmehled,” not outwitted.

I am the really good looking person. Image source: http://bit.ly/1rPWjN3

What the IDC report lacks in comprehensiveness with regard to vendors, Gartner mentions quite a few companies allegedly offering enterprise search solutions. You must chase down your local Garnter sales person for more details. I want to summarize the points that surfaced in our lunch time pizza fest.

First, the Gartner “study” includes 18 or 19 vendors. Recommind is on the Gartner list even though a supremely confident public relations “professional” named Laurent Ionta insisted that Recommind was not in the July 2014 Gartner report. I called her attention to report number G00260831 and urged her to use her “bulldog” motivation to contact her client and Gartner’s experts to get the information from the horse’s mouth as it were. (Her firm is www.lewispr.com and its is supported to be the Digital Agency of the Year and on the Inc 5000 list of the fastest growing companies in America.) I am impressed with the accolades she included in her emails to me. The fact that this person who may work on the Recommind account was unaware that Gartner pegged Recommind as a niche player seemed like a flub of the first rank. When it comes to search, not even those in the search sector may know who’s on first or among the chosen 19.

To continue with my first take away from lunch, there were several companies that those at lunch thought should be included in the Gartner “analysis.” As I recall, the companies to which my motley lunch group wanted Gartner to apply their considerable objective and subjective talents were:

  • ElasticSearch. This in my view is the Big Dog in enterprise search at the moment. The sole reason is that ElasticSearch has received an injection of another $70 million to complement the $30 odd million it had previously gather. Oh, ElasticSearch is a developer magnet. Other search vendors should be so popular with the community crowd.
  • Oracle. This company owns and seems to offer Endeca solutions along with RightNow/InQuira natural language processing for enterprise customer support, the fading Secure Enterprise Search system, and still popping and snapping Oracle Text. I did not mention to the lunch crowd that Oracle also owns Artificial Linguistics and Triple Hop technology. This information was, in my view, irrelevant to my lunch mates.
  • SphinxSearch. This system is still getting love from the MySQL contingent. Imagine no complex structured query language syntax to find information tucked in a cell.

There are some other information retrieval outfits that I thought of mentioning, but again, my free lunch group does not know what it does not know. Like many folks who discuss search with me, learning details about search systems is not even on the menu. Even when the information is free, few want to confuse fantasy with reality.

The second take away is that rational for putting most vendors in the niche category puzzled me. If a company really has an enterprise search solution, how is that solution a niche? The companies identified as those who can see where search is going are, as I heard, labeled “visionaries.” The problem is that I am not sure what a search visionary is; for example, how does a French aerospace and engineering firm qualify as a visionary? Was HP a visionary when it bought Autonomy, wrote off $8 billion, and initiated litigation against former colleagues? How does this Google supplied definition apply to enterprise search:

able to see visions in a dream or trance, or as a supernatural apparition?

The final takeaway for me was the failure to include any search system from China, Germany, or Russia. Interesting. Even my down on their heels lunch group was aware of Yandex and its effort in enterprise search via a Yandex appliance. Well, internationalization only goes so far I suppose.

I recall hearing one of my luncheon guests say that IBM was, according the “experts” at Gartner, a niche player.Gentle reader,  I can describe IBM many ways, but I am not sure it is a niche player like Exorbyte (eCommerce mostly) and MarkLogic (XML data management). Nope, IBM’s search embraces winning Jeopardy, creating recipes with tamarind, and curing assorted diseases. And IBM offers plain old search as part of DB2 and its content management products plus some products obtained via acquisition. Cybertap search, anyone? When someone installs, what used to be OmniFind, I thought IBM was providing an enterprise class information retrieval solution. Guess I am wrong again.

Net net: Gartner has prepared the ground for a raft of follow on analyses. I would suggest that you purchase a copy of the July 2014 Gartner search report. You may be able to get your bearings so you can answer these questions:

  1. What are the functional differences among the enterprise search systems?
  2. How does the HP Autonomy “solution” compare to the pre-HP Autonomy solution?
  3. What is the cost of a Google Search Appliance compared to a competing product from Maxxcat or Thunderstone? (Yep, two more vendors not in the Gartner sample.)
  4. What causes a company to move from being a challenger in search to a niche player?
  5. What makes both a printer company and a Microsoft-centric solution qualified to match up with Google and HP Autonomy in enterprise search?
  6. What are the licensing costs, customizing costs, optimizing costs, and scaling costs of each company’s enterprise search solution? (You can find the going rate for the Google Search Appliance at www.gsaadvantage.gov. The other 18? Good luck.)

I will leave you to your enterprise search missions. Remember. Gartner, unlike some other mid-tier consulting firms, makes an effort to try to talk about what its consultants perceive as concrete aspects of information retrieval. Other outfits not so much. That’s why I remain confused about the IDC KQ (knowledge quotient) thing, the meaning of hidden value, and unlocking. Is information like a bike padlock?

Stephen E Arnold, July 31, 2014

Interviews

Elasticsearch: A Platform for Third Party Revenue

Making money from search and content processing is difficult. One company has made a breakthrough. You can learn how Mark Brandon, one of the founders of QBox, is using the darling of the open source search world to craft a robust findability business.

I interviewed Mr. Brandon, a graduate of the University of Texas as Austin, shortly after my return from a short trip to Europe. Compared with the state of European search businesses, Elasticsearch and QBox are on to what diamond miners call a “pipe.”

In the interview, which is part of the Search Wizards Speak series, Mr. Brandon said:

We offer solutions that work and deliver the benefits of open source technology in a cost-effective way. Customers are looking for search solutions that actually work.

Simple enough, but I have ample evidence that dozens and dozens of search and content  processing vendors are unable to generate sufficient revenue to stay in business. Many well known firms would go belly up without continual infusions of cash from addled folks with little knowledge of search’s history and a severe case of spreadsheet fever.

Qbox’s approach pivots on Elasticsearch. Mr. Brandon said:

When our previous search product proved to be too cumbersome, we looked for an alternative to our initial system. We tested Elasticsearch and built a cluster of Elasticsearch servers. We could tell immediately that the Elasticsearch system was fast, stable, and customizable. But we love the technology because of its built-in distributed nature, and we felt like there was room for a hosted provider, just as Cloudant is for CouchDB, Mongolab and MongoHQ are for MongoDB, Redis Labs is for Redis, and so on. Qbox is a strong advocate for Elasticsearch because we can tailor the system to customer requirements, confident the system makes information more findable for users.

When I asked where Mr. Brandon’s vision for functional findablity came from, he told me about an experience he had at Oracle. Oracle owns numerous search systems, ranging from the late 1980s Artificial Linguistics’ system to somewhat newer systems like the late 1990s Endeca system, and the newer technologies from Triple Hop. Combine these with the SES technology and the hybrid InQuira formed from two faltering NLP systems, and Oracle has some hefty investments.

Here’s Mr. Brandon’s moment of insight:

During my first week at Oracle, I asked one of my colleagues if they could share with me the names of the middleware buyer contacts at my 50 or so named accounts. One colleague said, “certainly”, and moments later an Excel spreadsheet popped into my inbox. I was stunned. I asked him if he was aware that “Excel is a Microsoft technology and we are Oracle.” He said, “Yes, of course.” I responded, “Why don’t you just share it with me in the CRM System?” (the CRM was, of course, Siebel, an Oracle product). He chortled and said, “Nobody uses the CRM here.” My head exploded. I gathered my wits to reply back, “Let me get this straight. We make the CRM software and we sell it to others. Are you telling me we don’t use it in-house?” He shot back, “It’s slow and unusable, so nobody uses it.” As it turned out, with around 10 million corporate clients and about 50 million individual names, if I had to filter for “just middleware buyers”, “just at my accounts”, “in the Northeast”, I could literally go get a cup of coffee and come back before the query was finished. If I added a fourth facet, forget it. The CRM system would crash. If it is that bad at the one of the world’s biggest software companies, how bad is it throughout the enterprise?

You can read the full interview at http://bit.ly/1mADZ29. Information about QBox is at www.qbox.com.

Stephen E Arnold, July 2, 2014

Latest News

The Perks and Pitfalls of a Yahoo/ AOL merger

An article on re/code titled Two Years and Still Stuck in a Revenue Rut, Will Yahoo’s Mayer Bite the AOL Bullet? attempts to separate fact from fiction when it... Read more »

August 1, 2014 | | Comment

Niice – a Search Engine Bent on Aesthetic Appeal

A new search engine has appeared on the radar called Niice. It is focused on inspiration search and the presentation of quality images to spark ideas. The Niice... Read more »

August 1, 2014 | | Comment

The IHS Invention Machine: US 8,666,730

I am not an attorney. I consider this a positive. I am not a PhD with credentials as impressive Vladimir Igorevich Arnold, my distant relative. He worked with Andrey... Read more »

July 31, 2014 | | Comment

Markov Chains for the English Major Turned Search Expert

I know there are quite a few experts in enterprise search, content processing, and the near mystical Big Data thing. I wanted to point out that if you want to know... Read more »

July 31, 2014 | | Comment

Software-Cluster Promises Better Mobile Services

A German software company popped into the aggregator with a press release entitled “Software-Cluster Designing Platforms For Innovative Internet Services” from... Read more »

July 31, 2014 | | Comment

Google Not Winning On Removing Information

Google has faced numerous lawsuits about having content removed from search results. International Business Times explains about a current battle in the UK: “Google’s... Read more »

July 31, 2014 | | Comment

Twitter: Short Text Outfit Gets Excited about Computer Vision

Robots. Magic stuff like semantic concept lenses. Logical wackiness like software that delivers knowledge. I read “Twitter Acquires Deep Learning Startup Madbits.”... Read more »

July 30, 2014 | | Comment

Quote to Note: Thomson Reuters Sustainable Growth

Good news for Thomson Reuters, one of the bellwether outfits for professional publishing and “real” news. The company continues to struggle with flat line revenue.... Read more »

July 30, 2014 | | Comment

No Search Or Publishing For Science

The scientific method is used to approach a problem logically and come to reasonable conclusion based off the presented evidence. Allow me to present the following... Read more »

July 30, 2014 | | Comment

Google Manipulating Content And Yelp Is Perturbed

Google is manipulating search results so that they favor Google content over Yelp. What a big shocker! Not really, so why are some people surprised? TechCrunch says... Read more »

July 30, 2014 | | Comment