Digital Reasoning Releases Synthesis Version 4

December 9, 2016

Digital Reasoning has released the latest iteration of its Synthesys platform, we learn from Datanami’s piece, “Cognitive Platform Sharpens Focus on Untructured Data.” Readers may recall that Digital Reasoning provides tools to the controversial US Army intelligence system known as DCGS. The write-up specifies:

Version 4 of the Digital Reasoning platform released on Tuesday (June 21) is based on proprietary analytics tools that apply deep learning neural network techniques across text, audio and images. Synthesys 4 also incorporates behavioral analytics based on anomaly detection techniques.

The upgrade also reflects the company’s push into user and ‘entity’ behavior analytics, a technique used to leverage machine learning in security applications such as tracking suspicious activity on enterprise networks and detecting ransomware attacks. ‘We are especially excited to expand into the area of entity behavior analytics, combining the analysis of structured and unstructured data into a person-centric, prioritized profile that can be used to predict employees at risk for insider threats,’ Bill DiPietro, Digital Reasoning’s vice president of product management noted in a statement.

The platform has added Spanish and Chinese to its supported languages, which come with syntactic parsing. There is also now support for Elasticsearch, included in the pursuit of leveraging unstructured data in real time. The company emphasizes the software’s ability to learn from context, as well as enhanced tools for working with reports.

Digital Reasoning was founded in 2000, and makes its primary home in Nashville, Tennessee, with offices in Washington, DC, and London. The booming company is also hiring, especially in the Nashville area.

Cynthia Murrell, December 9, 2016

 

 

 

The Data Sharing of Healthcare

December 8, 2016

Machine learning tools like the artificial intelligence Watson from IBM can and will improve healthcare access and diagnosis, but the problem is getting on the road to improvement.  Implementing new technology is costly, including the actual equipment and training staff, and there is always the chance it could create more problems than resolving them.  However, if the new technology makes a job easier and resolves situations then you are on the path to improvement.  The UK is heading that way says TechCrunch in, “DeepMind Health Inks New Deal With UK’s NHS To Deploy Streams App In Early 2017.”

London’s NHS Royal Free Hospital will employ DeepMind Health in 2017, taking advantage of its data sharing capabilities.  Google owns DeepMind Health and it focuses on driving the application of machine learning algorithms in preventative medicine.  The NHS and DeepMind Health had a prior agreement in the past, but when the New Scientist made a freedom of information request their use of patients’ personal information came into question.  The information was used to power the Streams app to sent alerts to acute kidney injury patients.  However, ICO and MHRA shut down Streams when it was discovered it was never registered as a medical device.

The eventual goal is to relaunch Streams, which is part of the deal, but DeepMind has to repair its reputation.  DeepMind is already on the mend with the new deal and registering Streams as a medical device also helped.  In order for healthcare apps to function properly, they need to be tested:

The point is, healthcare-related AI needs very high-quality data sets to nurture the kind of smarts DeepMind is hoping to be able to build. And the publicly funded NHS has both a wealth of such data and a pressing need to reduce costs — incentivizing it to accept the offer of “free” development work and wide-ranging partnerships with DeepMind…

Streams is the first step towards a healthcare system powered by digital healthcare products.  As already seen is the stumbling block protecting personal information and powering the apps so they can work.  Where does the fine line between the two end?

Whitney Grace, December 8, 2016

Increasingly Sophisticated Cybercrime

December 8, 2016

What a deal! Pymnts.com tells us that “Hacked Servers Sell for $6 On The Dark Web.” Citing recent research from Kapersky Lab, the write-up explains:

Kaspersky Lab researchers exposed a massive global underground market selling more than 70,000 hacked servers from government entities, corporations and universities for as little as $6 each.

The cybersecurity firm said the newly discovered xDedic marketplace currently has a listing of 70,624 hacked Remote Desktop Protocol (RDP) servers for sale. It’s reported that many of the servers either host or provide access to consumer sites and services, while some have software installed for direct mail, financial accounting and POS processing, Kaspersky Lab confirmed.

Kapersky’s Costin Raiu notes the study is evidence that “cybercrime-as-a-service” is growing, and has been developing its own, well-organized infrastructure. He also observes that the victims of these criminals are not only the targets of attack, but the unwitting server-owners. xDedic, he says, represents a new type of cybercriminal marketplace.

Kapersky Lab recommends organizations take these precautions:

*Implement multi-layered approach to IT infrastructure security that includes a robust security solution

*Use of strong passwords in server authentication processes

*Establish an ongoing patch management process

*Perform regular security audits of IT infrastructures

*Invest in threat intelligence services”

Stay safe, dear readers.

Cynthia Murrell, December 8, 2016

Bug-Free, Efficient Tor Network Inching Towards Completion

November 30, 2016

The development team behind the Tor Project recently announced the release of Tor 0.2.9.5 that is almost bug-free, stable and secure.

Softpedia in a release titled New Tor “The Onion Router” Anonymity Network Stable Branch Getting Closer says:

Tor 0.2.9.5 Alpha comes three weeks after the release of the 0.2.9.4 Alpha build to add a large number of improvements and bug fixes that have been reported by users since then or discovered by the Tor Project’s hard working development team. Also, this release gets us closer to the new major update of The Onion Router anonymity network.

Numerous bugs and loopholes were being reported in Tor Network that facilitated backdoor entry to snooping parties on Tor users. With this release, it seems those security loopholes have been plugged.

The development team is also encouraging users to test the network further to make it completely bug-free:

If you want to help the Tor Project devs polish the final release of the Tor 0.2.9 series, you can download Tor 0.2.9.5 Alpha right now from our website and install it on your GNU/Linux distribution, or just fetch it from the repositories of the respective OS. Please try to keep in mind, though, that this is a pre-release version, not to be used in production environments.

Though it will always be a cat and mouse game between privacy advocates and those who want to know what goes on behind the veiled network, it would be interesting to see who will stay ahead of the race.

Vishal Ingole, November 30, 2016
Sponsored by ArnoldIT.com, publisher of the CyberOSINT monograph

Examples of Visualizations

November 20, 2016

If you want a quick look at what visualizations to use for use cases, you may find “An Overview of Text Mining Visualizations Possibilities with R on the CETA Trade Agreement.” The article focuses on trade agreement data, but  the graphics provide a darned good refresher about visualization options. One caveat: Some of the links in the write up do not work. Nevertheless, we found the illustrations and commentary helpful.

Stephen E Arnold, November 20, 2016

Palantir Technologies: Less War with Gotham?

November 9, 2016

I read “Peter Thiel Explains Why His Company’s Defense Contracts Could Lead to Less War.” I noted that the write up appeared in the Washington Post, a favorite of Jeff Bezos I believe. The write up referenced a refrain which I have heard before:

Washington “insiders” currently leading the government have “squandered” money, time and human lives on international conflicts.

What I highlighted as an interesting passage was this one:

a spokesman for Thiel explained that the technology allows the military to have a more targeted response to threats, which could render unnecessary the wide-scale conflicts that Thiel sharply criticized.

I also put a star by this statement from the write up:

“If we can pinpoint real security threats, we can defend ourselves without resorting to the crude tactic of invading other countries,” Thiel said in a statement sent to The Post.

The write up pointed out that Palantir booked about $350 million in business between 2007 and 2016 and added:

The total value of the contracts awarded to Palantir is actually higher. Many contracts are paid in a series of installments as work is completed or funds are allocated, meaning the total value of the contract may be reflected over several years. In May, for example, Palantir was awarded a contract worth $222.1 million from the Defense Department to provide software and technical support to the U.S. Special Operations Command. The initial amount paid was $5 million with the remainder to come in installments over four years.

I was surprised at the Washington Post’s write up. No ads for Alexa and no Beltway snarkiness. That too was interesting to me. And I don’t have a dog in the fight. For those with dogs in the fight, there may be some billability worries ahead. I wonder if the traffic jam at 355 and Quince Orchard will now abate when IBM folks do their daily commute.

Stephen E Arnold, November 9, 2016

Blue Chipper and Marketing Analytics

November 9, 2016

I think this write up “Reporter’s Notebook: McKinsey’s Heller Talks Analytics” is a summary plus odds and ends based on a McKinsey blue chip consultant’s lecture. McKinsey prides itself on hiring smart people, and it does some crafty buzzwording when it makes the obvious so darned obvious.

I noted this passage:

CMOS are asking: Do we have enough data scientists? Are we accelerating customer acquisition? Are we increasing customer value? What they care about is taking the intense amount of data that happens every day from call centers, Web sites and stores, then stitching it together and identifying new customer segmentation and new opportunities to create growth. The CMO is thinking about data science — how it can drive growth about the organization.

The idea is that federating disparate information is important from McKinsey’s point of view.

How does a marketer deal with data in a way that makes revenue? I highlighted this MBA formula: Get organized, plan, and hire McKinsey to help. The 4Ds will help too:

  • “Data. Aggregate as much information as possible and everything you do downstream creates more value.
  • Decisioning. Run advanced models — propensity models, churn models — against that data. You don’t become a data scientist overnight. The organization needs to do customer scoring and advanced analytics. Identify where the data fiefdoms are in your organization (people holding on to their data to protect their jobs) and get the right people together.
  • Design. Managing the content, offers and experience the customer receives and being curious and experimenting. Testing. A/B testing. Once you have the models, what are the experiences these customers want to see?
  • Distribution. Push both the decision data and test design into marketing. Close the loop and measure everything. If I’m in a room of marketers and I ask them what their roles are, they’re distributing marketing communications, just not in a truly data-driven way.”

But the marketing officer must embrace the five core beliefs behind “mobilization.” I bet you are eager to learn these five insights. Here you go:

  1. “Mobilize cross-functional leaders around the opportunity. The CMO needs CIO, store operations, different people to help break down the silos.
  2. Get creative about navigating the legacy … be relentless about solutions.
  3. Walk before you run. Identify a roadmap, pick some high priority areas and execute.
  4. Prioritize “lighthouse” projects to kick-start execution.
  5. Let data activation drive your new marketing operations model.”

What’s the payoff? Well, for McKinsey it is billable hours. For the client:

We see real aggressive growth with clients doing nothing wrong in the range of a 6X revenue capture. If I can increase the speed by which you test, you’re increasing revenue . Typically conversion rate increases from the low end of the 20s to high end of 150 percent plus  range … on the digital sales side yield exponential gains of 2, 3, 5X. Just 1 percent, 2 percent or 3 percent of enterprise value creation for a multi-billion company — driven by digital — is huge.

Huge? That seems to be a trendy word. Where have I heard it before? Hmmm. Will McKinsey guarantee the measurable benefit of its consultants’ work? My hunch is that McKinsey sends invoices; it does not write checks when its work wanders a bit from the data in a presentation.

Stephen E Arnold, November 9, 2016

Demand for Palantir Shares Has Allegedly Gone Poof

November 7, 2016

I read “Ex-Palantir Employees Are Struggling To Sell Their Shares.” Let’s assume that the information in the write up is spot on. The main idea is that one of the most visible of Silicon Valley’s secretive companies has created a problem for some of its former employees. I learned:

Demand has evaporated” for the shares that make up the bulk of Palantir’s pay packages, and the company’s CEO seems aware of financial angst among his staff.

The softening of the market for stock options suggests that the company’s hassles with investors and the legal dust up with the US government are having an effect. Couple the buzz with the prices in Silicon Valley, and it is easy to understand why some people want to covert options for cash money. I highlighted this passage:

Some said they needed the cash to buy a house or pay down debt, while another said they took out a loan to fund the process of turning the options into shares. One said it was “infuriating” trying to sell their shares in a “crap” market.

I found this statement from a broker, who was not named, suggestive:

This person then quoted an unidentified broker as saying, “There is absolutely nothing moving in Palantir. People who have bought through us are trying to sell now. I don’t see it changing without the company changing their tone on an IPO.”

With the apparent decision relating to the US Army and it procurement position with regards to Palantir going the way of the Hobbits, perhaps the negativism will go away.

One thought: Buzzfeed continues to peck away at Palantir Technologies. Palantir Technologies has a relationship with Peter Thiel. The intersection of online publications and Peter Thiel has been interesting. Worth watching.

Stephen E Arnold, November 7, 2016

DataSift and Its Getting the Most from Facebook Series

November 6, 2016

There’s been some chatter about Facebook’s approach to news. For some researchers, Facebook is a high value source of information and intelligence. If you want to get a sense of what one can do with Facebook, you may find the DataSift series “Getting the Most from Facebook” helpful.

At this time there are six blog posts on this topic, you can locate the articles via the links below. Each write up contains a DataSift commercial:

  1. Types of social networks
  2. What data analytics can be used on Facebook data
  3. Facebook topic data
  4. Topic data use cases and drawbacks
  5. Why use filters
  6. Pylon specific tips but these apply to other analytics systems as well.

The write ups illustrate why law enforcement and intelligence professionals find some Facebook information helpful. Markets are probably aware of the utility of Facebook information, but to get optimum results, discipline must be applied to the content Facebookers generate at a remarkable rate.

Stephen E Arnold, November 6, 2016

Model Based Search: Latent Dirichlet Allocation

November 5, 2016

I worked through a presentation by Thomas Levi, a wizard at Unbounce, a landing page company. . You can download the presentation at this link but you will need to log in in order to access the information. There’s also a video and an MP3 available. The idea is that concepts plus tailored procedures in models provides high value outputs. I noted this passage:

utilizing concepts in topic modeling can be used to build a highly effective model to categorize and find similar pages.

I noted the acronym LDA or Latent Dirichlet Allocation because that struck me as the core of the method. For those familiar with the original Autonomy Digital Reasoning Engine, there will be some similar chords. Unbounce’s approach provides another example of the influence and value of the methods pioneered by Autonomy in the mid 1990s.

Stephen E Arnold, November 5. 2016

Next Page »