Word Embedding Captures Semantic Relationships

November 10, 2016

The article on O’Reilly titled Capturing Semantic Meanings Using Deep Learning explores word embedding in natural language processing. NLP systems typically encode word strings, but word embedding offers a more complex approach that emphasizes relationships and similarities between words by treating them as vectors. The article posits,

For example, let’s take the words woman, man, queen, and king. We can get their vector representations and use basic algebraic operations to find semantic similarities. Measuring similarity between vectors is possible using measures such as cosine similarity. So, when we subtract the vector of the word man from the vector of the word woman, then its cosine distance would be close to the distance between the word queen minus the word king (see Figure 1).

The article investigates the various neural network models that prevent the expense of working with large data. Word2Vec, CBOW, and continuous skip-gram are touted as models and the article goes into great technical detail about the entire process. The final result is that the vectors understand the semantic relationship between the words in the example. Why does this approach to NLP matter? A few applications include predicting future business applications, sentiment analysis, and semantic image searches.

Chelsea Kerwin,  November 10, 2016
Sponsored by ArnoldIT.com, publisher of the CyberOSINT monograph

Comments

Comments are closed.

  • Archives

  • Recent Posts

  • Meta