Machine Learning Frameworks: Why Not Just Use Amazon?

September 16, 2018

A colleague sent me a link to “The 10 Most Popular Machine Learning Frameworks Used by Data Scientists.” I found the write up interesting despite the author’s failure to define the word popular and the bound phrase data scientists. But few folks in an era of “real” journalism fool around with my quaint notions.

According to the write up, the data come from an outfit called Figure Eight. I don’t know the company, but I assume their professionals adhere to the basics of Statistics 101. You know the boring stuff like sample size, objectivity of the sample, sample selection, data validity, etc. Like information in our time of “real” news and “real” journalists, some of these annoying aspects of churning out data in which an old geezer like me can have some confidence. You know like the 70 percent accuracy of some US facial recognition systems. Close enough for horseshoes, I suppose.

miss sort of accurate

Here’s the list. My comments about each “learning framework” appear in italics after each “learning framework’s” name:

  1. Pandas — an open source, BSD-licensed library
  2. Numpy — a package for scientific computing with Python
  3. Scikit-learn — another BSD licensed collection of tools for data mining and data analysis
  4. Matplotlib — a Python 2D plotting library for graphics
  5. TensorFlow — an open source machine learning framework
  6. Keras — a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano
  7. Seaborn — a Python data visualization library based on matplotlib
  8. Pytorch & Torch
  9. AWS Deep Learning AMI — infrastructure and tools to accelerate deep learning in the cloud. Not to be annoying but defining AMI as Amazon Machine Learning Interface might be useful to some
  10. Google Cloud ML Engine — neural-net-based ML service with a typically Googley line up of Googley services.

Stepping back, I noticed a handful of what I am sure are irrelevant points which are of little interest to a “real” journalists creating “real” news.

First, notice that the list is self referential with python love. Frameworks depend on other python loving frameworks. There’s nothing inherently bad about this self referential approach to shipping up a list, and it makes it a heck of a lot easier to create the list in the first place.

Second, the information about Amazon is slightly misleading. In my lecture in Washington, DC on September 7, I mentioned that Amazon’s approach to machine learning supports Apache MXNet and Gluon, TensorFlow, Microsoft Cognitive Toolkit, Caffe, Caffe2, Theano, Torch, PyTorch, Chainer, and Keras. I found this approach interesting, but of little interest to those creating a survey or developing an informed list about machine learning frameworks; for example, Amazon is executing a quite clever play. In bridge, I think the phrase “trump card” suggests what the Bezos momentum machine has cooked up. Notice the past tense because this Amazon stuff has been chugging along in at least one US government agency for about four, four and one half years.

Third, Google brings up dead last. What about IBM? What about Microsoft and its CNTK. Ah, another acronym, but I as a non real journalist will reveal that this acronym means Microsoft Cognitive Toolkit. More information is available in Microsoft’s wonderful prose at this link. By the way, the Amazon machine learning spinning momentum thing supports the CNTK. Imagine that? Right, I didn’t think so.

Net net: The machine learning framework list may benefit from a bit of refinement. On the other hand, just use Amazon and move down the road to a new type of smart software lock in. Want to know more? Write benkent2020 @ yahoo dot com and inquire about our for fee Amazon briefing about machine learning, real time data marketplaces, and a couple of other most off the radar activities. Have you seen Amazon’s facial recognition camera? It’s part of the Amazon machine learning imitative, and it has some interesting capabilities.

Stephen E Arnold, September 16, 2018

Comments

Comments are closed.

  • Archives

  • Recent Posts

  • Meta