Social Scoring Is a Thing and in Use in the US and EU Now

April 9, 2024

green-dino_thumb_thumb_thumbThis essay is the work of a dumb dinobaby. No smart software required.

Social scoring is a thing.

The EU AI regulations are not too keen on slapping an acceptability number on people or a social score. That’s a quaint idea because the mechanisms for doing exactly that are available. Furthermore, these are not controlled by the EU, and they are not constrained in a meaningful way in the US. The availability of mechanisms for scoring a person’s behaviors chug along within the zippy world of marketing. For those who pay attention to policeware and intelware, many of the mechanisms are implemented in specialized software.


Will the two match up? Thanks, MSFT Copilot. Good enough.

There’s a good rundown of the social scoring tools in “The Role of Sentiment Analysis in Marketing.” The content is focused on uses “emotional” and behavioral signals to sell stuff. However, the software and data sets yield high value information for other purposes. For example, an individual with access to data about the video viewing and Web site browsing about a person or a cluster of persons can make some interesting observations about that person or group.

Let me highlight some of the software mentioned in the write up. There is an explanation of the discipline of “sentiment analysis.” A person engaged in business intelligence, investigations, or planning a disinformation campaign will have to mentally transcode the lingo into a more practical vocabulary, but that’s no big deal. The write up then explains how “sentiment analysis” makes it possible to push a person’s buttons. The information makes clear that a service with a TikTok-type recommendation system or feed of “you will probably like this” can exert control over an individual’s ideas, behavior, and perception of what’s true or false.

The guts of the write up is a series of brief profiles of eight applications available to a marketer, PR team, or intelligence agency’s software developers. The products described are:

  • Sprout Social. Yep, it’s wonderful. The company wrote the essay I am writing about.
  • Reputation. Hello, social scoring for “trust” or “influence”
  • Monkeylearn. What’s the sentiment of content? Monkeylearn can tell you.
  • Lexalytics. This is an old-timer in sentiment analysis.
  • Talkwalker. A content scraper with analysis and filter tools. The company is not “into” over-the-transom inquiries

If you have been thinking about the EU’s AI regulations, you might formulate an idea that existing software may irritate some regulators. My team and I think that AI regulations may bump into companies and government groups already using these tools. Working out the regulatory interactions between AI regulations and what has been a reasonably robust software and data niche will be interesting.

In the meantime, ask yourself, “How many intelware and policeware systems implement either these tools or similar tools?” In my AI presentation at the April 2024 US National Cyber Crime Conference, I will provide a glimpse of the future by describing a European company which includes some of these functions. Regulations do not control technology nor innovation.

Stephen E Arnold, April 9, 2024

In Big Data, Bad Data Does Not Matter. Not So Fast, Mr. Slick

April 8, 2024

green-dino_thumb_thumb_thumbThis essay is the work of a dumb dinobaby. No smart software required.

When I hear “With big data, bad data does not matter. It’s the law of big numbers. Relax,” I chuckle. Most data present challenges. First, figuring out which data are accurate can be a challenge. But the notion of “relax,” does not cheer me. Then one can consider data which have been screwed up by a bad actor, a careless graduate student, a low-rent research outfit, or someone who thinks errors are not possible.


The young vendor is confident that his tomatoes and bananas are top quality. The color of the fruit means nothing. Thanks, MSFT Copilot. Good enough, like the spoiled bananas.

Data Quality Getting Worse, Report Says” offers some data (which may or may not be on the mark) which remind me to be skeptical of information available today. The Datanami article points out:

According to the company’s [DBT Labs’] State of Analytics Engineering 2024 report released yesterday, poor data quality was the number one concern of the 456 analytics engineers, data engineers, data analysts, and other data professionals who took the survey. The report shows that 57% of survey respondents rated data quality as one of the three most challenging aspects of the data preparation process. That’s a significant increase from the 2022 State of Analytics Engineering report, when 41% indicated poor data quality was one of the top three challenges.

The write up offers several other items of interest; for example:

  • Questions about who owns the data
  • Integration of fusion of multiple data sources
  • Documenting data products; that is, the editorial policy of the producer / collector of the information.

This flashing yellow light about data seems to be getting brighter. The implication of the report is that data quality “appears” to be be heading downhill. The write up quotes Jignesh Patel, computer science professor at Carnegie Mellon University to underscore the issue:

“Data will never be fully clean. You’re always going to need some ETL [extract, transform, and load] portion. The reason that data quality will never be a “solved problem,” is partly because data will always be collected from various sources in various ways, and partly because or data quality lies in the eye of the beholder. You’re always collecting more and more data. If you can find a way to get more data, and no one says no to it, it’s always going to be messy. It’s always going to be dirty.”

But what about the assertion that in big data, bad data will be a minor problem. That assertion may be based on a lack of knowledge about some of the weak spots in data gathering processes. In the last six months, my team and I have encountered these issues:

  1. The source of the data contained a flaw so that it was impossible to determine what items were candidates for filtering out
  2. The aggregator had zero controls because it acquired data from another party and did not homework other than hyping a new data set
  3. Flawed data filled the exception folder with a large percentage of the information that remediation was not possible due to time and cost constraints
  4. Automated systems are indiscriminate, and few (sometimes no one) pay close attention to inputs.

I agree that data quality is a concern. However, efficiency trumps old-fashioned controls and checks applied via subject matter experts and trained specialists. The fix will be smart software which will be cheaper and more opaque. The assumption that big data will be self healing may not be accurate, but it sounds good.

Stephen E Arnold, April 8, 2024

How Smart Software Works: Well, No One Is Sure It Seems

March 21, 2024

green-dino_thumb_thumb_thumbThis essay is the work of a dumb dinobaby. No smart software required.

The title of this Science Daily article strikes me a slightly misleading. I thought of my asking my son when he was 14, “Where did you go this afternoon?” He would reply, “Nowhere.” I then asked, “What did you do?” He would reply, “Nothing.” Helpful, right? Now consider this essay title:

How Do Neural Networks Learn? A Mathematical Formula Explains How They Detect Relevant Patterns


AI experts are unable to explain how smart software works. Thanks, MSFT Copilot Bing. You have smart software figured out, right? What about security? Oh, I am sorry I asked.

Ah, a single formula explains pattern detection. That’s what the Science Daily title says I think.

But what does the write up about a research project at the University of San Diego say? Something slightly different I would suggest.

Consider this statements from the cited article:

“Technology has outpaced theory by a huge amount.” — Mikhail Belkin, the paper’s corresponding author and a professor at the UC San Diego Halicioglu Data Science Institute

What’s the consequence? Consider this statement:

“If you don’t understand how neural networks learn, it’s very hard to establish whether neural networks produce reliable, accurate, and appropriate responses.

How do these black box systems work? Is this the mathematical formula? Average Gradient Outer Product or AGOP. But here’s the kicker. The write up says:

The team also showed that the statistical formula they used to understand how neural networks learn, known as Average Gradient Outer Product (AGOP), could be applied to improve performance and efficiency in other types of machine learning architectures that do not include neural networks.

Net net: Coulda, woulda, shoulda does not equal understanding. Pattern detection does not answer the question of what’s happening in black box smart software. Try again, please.

Stephen E Arnold, March 21, 2024

Synthetic Data: From Science Fiction to Functional Circumscription

March 4, 2024

green-dino_thumbThis essay is the work of a dumb humanoid. No smart software required.

Synthetic data are information produced by algorithms, not by real-world events. It’s created using real-world data and numerical recipes. The appeal is that it is easier than collecting real life information, cheaper than dealing with data from real life, and faster than fooling around with surveys, monitoring devices, and law suits. In theory, synthetic data is one promising way of skirting the expense of getting humans involved.

What Is [a] Synthetic Sample – And Is It All It’s Cracked Up to Be?” tackles the subject of a synthetic sample, a topic which is one slice of the synthetic data universe. The article seeks “to uncover the truth behind artificially created qualitative and quantitative market research data.” I am going to avoid the question, “Is synthetic data useful?” because the answer is, “Yes.” Bean counters and those looking to find a way out of the pickle barrel filled with expensive brine are going to chase after the magic of algorithms producing data to do some machine learning magic.


In certain situations, fake flowers are super. Other times, the faux blooms are just creepy. Thanks, MSFT Copilot Bing thing. Good enough.

Are synthetic data better than real world data? The answer from my vantage point is, “It depends.” Fancy math can prove that for some use cases, synthetic data are “good enough”; that is, the data produce results close enough to what a “real” data set provides. Therefore, just use synthetic data. But for other applications, synthetic data might throw some sand in the well-oiled marketing collateral describing the wonders of synthetic data. (Some university research labs are quite skilled in PR speak, but the reality of their methods may not line up with the PowerPoints used to raise venture capital.)

This essay discusses a research project to figure out if a synthetic sample works or in my lingo if the synthetic sample is good enough. The idea is that as long as the synthetic data is within a specified error range, the synthetic sample can be used and may produce “reliable” or useful results. (At least one hopes this is the case.)

I want to focus on one portion of the cited article and invite you to read the complete Kantar explanation.

Here’s the passage which snagged my attention:

… right now, synthetic sample currently has biases, lacks variation and nuance in both qual and quant analysis. On its own, as it stands, it’s just not good enough to use as a supplement for human sample. And there are other issues to consider. For instance, it matters what subject is being discussed. General political orientation could be easy for a large language model (LLM), but the trial of a new product is hard. And fundamentally, it will always be sensitive to its training data – something entirely new that is not part of its training will be off-limits. And the nature of questioning matters – a highly ’specific’ question that might require proprietary data or modelling (e.g., volume or revenue for a particular product in response to a price change) might elicit a poor-quality response, while a response to a general attitude or broad trend might be more acceptable.

These sentences present several thorny problems is academic speak. Let’s look at them in the vernacular of rural Kentucky where I live.

First, we have the issue of bias. Training data can be unintentionally or intentionally biased. Sample radical trucker posts on Telegram, and use those messages to train a model like Reor. That output is going to express views that some people might find unpalatable. Therefore, building a synthetic data recipe which includes this type of Telegram content is going to be oriented toward truck driver views. That’s good and bad.

Second, a synthetic sample may require mixing data from a “real” sample. That’s a common sense approach which reduces some costs. But will the outputs be good enough. The question then becomes, “Good enough for what applications?” Big, general questions about how a topic is presented might be close enough for horseshoes. Other topics like those focusing on dealing with a specific technical issue might warrant more caution or outright avoidance of synthetic data. Do you want your child or wife to die because the synthetic data about a treatment regimen was close enough for horseshoes. But in today’s medical structure, that may be what the future holds.

Third, many years ago, one of the early “smart” software companies was Autonomy, founded by Mike Lynch. In the 1990s, Bayesian methods were known but some — believe it or not — were classified and, thus, not widely known. Autonomy packed up some smart software in the Autonomy black box. Users of this system learned that the smart software had to be retrained because new terms and novel ideas not in the original training set were not findable by the neuro linguistic program’s engine.  Yikes, retraining requires human content curation of data sets, time to retrain the system, and the expense of redeploying the brains of the black boxes. Clients did not like this and some, to be frank, did not understand why a product did not work like an MG sports car. Synthetic data has to be trained to “know” about new terms and avid the “certain blindness” probability based systems possess.

Fourth, the topic of “proprietary data modeling” means big bucks. The idea behind synthetic data is that it is cheaper. Building proprietary training data and keeping it current is expensive. Is it better? Yeah, maybe. Is it faster? Probably not when humans are doing the curation, cleaning, verifying, and training.

The write up states:

But it’s likely that blended models (human supplemented by synthetic sample) will become more common as LLMs get even more powerful – especially as models are finetuned on proprietary datasets.

Net net: Synthetic data warrants monitoring. Some may want to invest in synthetic data set companies like Kantar, for instance. I am a dinobaby, and I like the old-fashioned Stone Age approach to data. The fancy math embodies sufficient risk for me. Why increase risk? Remember my reference to a dead loved one? That type of risk.

Stephen E Arnold, March 4, 2023

Bad News Delivered via Math

March 1, 2024

green-dino_thumbThis essay is the work of a dumb humanoid. No smart software required.

I am not going to kid myself. Few people will read “Hallucination is Inevitable: An Innate Limitation of Large Language Models” with their morning donut and cold brew coffee. Even fewer will believe what the three amigos of smart software at the National University of Singapore explain in their ArXiv paper. Hard on the heels of Sam AI-Man’s ChatGPT mastering Spanglish, the financial payoffs are just too massive to pay much attention to wonky outputs from smart software. Hey, use these methods in Excel and exclaim, “This works really great.” I would suggest that the AI buggy drivers slow the Kremser down.


The killer corollary. Source: Hallucination is Inevitable: An Innate Limitation of Large Language Models.

The paper explains that large language models will be reliably incorrect. The paper includes some fancy and not so fancy math to make this assertion clear. Here’s what the authors present as their plain English explanation. (Hold on. I will give the dinobaby translation in a moment.)

Hallucination has been widely recognized to be a significant drawback for large language models (LLMs). There have been many works that attempt to reduce the extent of hallucination. These efforts have mostly been empirical so far, which cannot answer the fundamental question whether it can be completely eliminated. In this paper, we formalize the problem and show that it is impossible to eliminate hallucination in LLMs. Specifically, we define a formal world where hallucination is defined as inconsistencies between a computable LLM and a computable ground truth function. By employing results from learning theory, we show that LLMs cannot learn all of the computable functions and will therefore always hallucinate. Since the formal world is a part of the real world which is much more complicated, hallucinations are also inevitable for real world LLMs. Furthermore, for real world LLMs constrained by provable time complexity, we describe the hallucination-prone tasks and empirically validate our claims. Finally, using the formal world framework, we discuss the possible mechanisms and efficacies of existing hallucination mitigators as well as the practical implications on the safe deployment of LLMs.

Here’s my take:

  1. The map is not the territory. LLMs are a map. The territory is the human utterances. One is small and striving. The territory is what is.
  2. Fixing the problem requires some as yet worked out fancier math. When will that happen? Probably never because of no set can contain itself as an element.
  3. “Good enough” may indeed by acceptable for some applications, just not “all” applications. Because “all” is a slippery fish when it comes to models and training data. Are you really sure you have accounted for all errors, variables, and data? Yes is easy to say; it is probably tough to deliver.

Net net: The bad news is that smart software is now the next big thing. Math is not of too much interest, which is a bit of a problem in my opinion.

Stephen E Arnold, March 1, 2024

Surprise! Smart Software and Medical Outputs May Kill You

February 29, 2024

green-dino_thumbThis essay is the work of a dumb humanoid. No smart software required.

Have you been inhaling AI hype today? Exhale slowly, then read “Generating Medical Errors: GenAI and Erroneous Medical References,” produced by the esteemed university with a reputation for shaking the AI cucarachas and singing loudly “Ai, Ai, Yi.” The write up is an output of the non-plagiarizing professionals in the Human Centered Artificial Intelligence unit.

The researchers report states:

…Large language models used widely for medical assessments cannot back up claims.

Here’s what the HAI blog post states:

we develop an approach to verify how well LLMs are able to cite medical references and whether these references actually support the claims generated by the models. The short answer: poorly. For the most advanced model (GPT-4 with retrieval augmented generation), 30% of individual statements are unsupported and nearly half of its responses are not fully supported.

Okay, poorly. The disconnect is that the output sounds good, but the information is distorted, off base, or possibly inappropriate.

What I found interesting is a stack ranking of widely used AI “systems.” Here’s the chart from the HAI article:


The least “poor” are the Sam AI-Man systems. In the middle is the Anthropic outfit. Bringing up the rear is the French “small” LLM Mistral system. And guess which system is dead last in this Stanford report?

Give up?

The Google. And not just the Google. The laggard is the Gemini system which was Bard, a smart software which rolled out after the Softies caught the Google by surprise about 14 months ago. Last in URL validity, last in statement level support, and last in response level support.

The good news is that most research studies are non reproducible or, like the former president of Stanford’s work, fabricated. As a result, I think these assertions will be easy for an art history major working in Google’s PR confection machine will bat them away like annoying flies in Canberra, Australia.

But last from researchers at the estimable institution where Google, Snorkel and other wonderful services were invented? That’s a surprise like the medical information which might have unexpected consequences for Aunt Mille or Uncle Fred.

Stephen E Arnold, February 29, 2024

It Is Here: The AI Generation

February 2, 2024

green-dino_thumb_thumb_thumbThis essay is the work of a dumb dinobaby. No smart software required.

Yes, another digital generation has arrived. The last two or three have been stunning, particularly when compared to my childhood in central Illinois. We played hide and seek; now the youthful create fake Taylor Swift videos. Ah, progress.

I read “Qustodio Releases 5th Annual Report Studying Children’s Digital Habits, Born Connected: The Rise of the AI Generation.” I have zero clue if the data are actual factual. With the recent information about factual creativity at the Harvard medical brain trust, nothing will surprise me. Nevertheless, let me highlight several factoids and then, of course, offer some unwanted Beyond Search comments. Hey, it is a free blog, and I have some friskiness in my dinobaby step.


Memories. Thanks, MSFT Copilot Bing thing. Not even close to what I specified.

The sample involved “400,000 families and schools.” I don’t remember too much about my Statistics 101 course 60 years ago, but the sample size seems — interesting. Here’s what Qustodio found:

YouTube is number one for streaming, kiddies spent 60 percent more time on TikTok

How much time goes to couch potato-ing? Here’s the answer:

TikTok continued to captivate with children spending a global average of 112 minutes daily on the app – up from 107 in 2022. UK kids were particularly fond of the bottomless scroll as they racked up 127 mins/day.

Why read, play outdoors, or fiddle with a chemistry set? Just kick back and check out ASMR, being thin, and dance move videos. Sounds tasty, doesn’t it?

And what is the most popular kiddie app? Here’s the answer:


If you want to buy the full report, click this link.

Several observations:

  1. The smart software angle may be in the full report, but the summary skirts the issue, recycling the same grim numbers: More video, less of other activities like being a child
  2. Will this “generation” of people be able to differentiate reality from fake anything? My hunch is that the belief that these young folks have super tuned baloney radar may be — baloney.
  3. A sample of 400,000? Yeah.

Net net: I am glad to be an old dinobaby. Really, really happy.

Stephen E Arnold, February 2, 2024

Robots, Hard and Soft, Moving Slowly. Very Slooowly. Not to Worry, Humanoids

February 1, 2024

green-dino_thumb_thumb_thumbThis essay is the work of a dumb dinobaby. No smart software required.

CNN that bastion of “real” journalism published a surprising story: “We May Not Lose Our Jobs to Robots So Quickly, MIT Study Finds.” Wait, isn’t MIT the outfit which had a tie up with the interesting Jeffrey Epstein? Oh, well.

The robots have learned that they can do humanoid jobs quickly and easily. But the robots are stupid, right? Yes, they are, but the managers looking for cost reductions and workforce reductions are not. Thanks, MSFT Copilot Bing thing. How the security of the MSFT email today?

The story presents as actual factual an MIT-linked study which seems to go against the general drift of smart software, smart machines, and smart investors. The story reports:

new research suggests that the economy isn’t ready for machines to put most humans out of work.

The fresh research finds that the impact of AI on the labor market will likely have a much slower adoption than some had previously feared as the AI revolution continues to dominate headlines. This carries hopeful implications for policymakers currently looking at ways to offset the worst of the labor market impacts linked to the recent rise of AI.

The story adds:

One key finding, for example, is that only about 23% of the wages paid to humans right now for jobs that could potentially be done by AI tools would be cost-effective for employers to replace with machines right now. While this could change over time, the overall findings suggest that job disruption from AI will likely unfurl at a gradual pace.

The intriguing facet of the report and the research itself is that it seems to suggest that the present approach to smart stuff is working just fine, thank you very much. Why speed up or slow down? The “unfurling” is a slow process. No need for these professionals to panic as major firms push forward with a range of hard and soft robots:

  1. Consulting firms. Has MIT checked out Deloitte’s posture toward smart software and soft robots?
  2. Law firms. Has MIT talked to any of the Top 20 law firms about their use of smart software?
  3. Academic researchers. Has MIT talked to any of the graduate students or undergraduates about their use of smart software or soft robots to generate bibliographies, summaries of possibly non-reproducible studies, or books mentioning their professor?
  4. Policeware vendors. Companies like Babel Street and Recorded Future are putting pedal to the metal with regard to smart software.

My hunch is that MIT is not paying attention to the happy robots at Tesla or the bad actors using software robots to poke through the cyber defenses of numerous outfits.

Does CNN ask questions? Not that I noticed. Plus, MIT appears to want good news PR. I would too if I were known to be pals with certain interesting individuals.

Stephen E Arnold, February 1, 2024

AI and Web Search: A Meh-crosoft and Google Mismatch

January 25, 2024

green-dino_thumb_thumb_thumbThis essay is the work of a dumb dinobaby. No smart software required.

I read a shocking report summary. Is the report like one of those Harvard Medical scholarly articles or an essay from the former president of Stanford University? I don’t know. Nevertheless, let’s look at the assertions in “Report: ChatGPT Hasn’t Helped Bing Compete With Google.” I am not sure if the information provides convincing proof that Googzilla is a big, healthy market dominator or if Microsoft has been fooling itself about the power of the artificial intelligence revolution.


The young inventor presents his next big thing to a savvy senior executive at a techno-feudal company. The senior executive is impressed. Are you? I know I am. Thanks, MSFT Copilot Bing thing. Too bad you timed out and told me, “I apologize for the confusion. I’ll try to create a more cartoon-style illustration this time.” Then you crashed. Good enough, right?

Let’s look at the write up. I noted this passage which is coming to me third, maybe fourth hand, but I am a dinobaby and I go with the online flow:

Microsoft added the generative artificial intelligence (AI) tool to its search engine early last year after investing $10 billion in ChatGPT creator OpenAI. But according to a recent Bloomberg News report — which cited data analytics company StatCounter — Bing ended 2023 with just 3.4% of the worldwide search market, compared to Google’s 91.6% share. That’s up less than 1 percentage point since the company announced the ChatGPT integration last January.

I am okay with the $10 billion. Why not bet big? The tactics works for some each year at the Kentucky Derby. I don’t know about the 91.6 number, however. The point six is troubling. What’s with precision when dealing with a result that makes clear that of 100 random people on line at the ever efficient BWI Airport, only eight will know how to retrieve information from another Web search system; for example, the busy Bing or the super reliable service.

If we assume that the Bing information of modest user uptake, those $10 billion were not enough to do much more than get the management experts at Alphabet to press the Red Alert fire alarm. One could reason: Google is a monopoly in spirit if not in actual fact. If we accept the market share of Bing, Microsoft is putting life preservers manufactured with marketing foam and bricks on its Paul Allen-esque super yacht.

The write up says via what looks like recycled information:

“We are at the gold rush moment when it comes to AI and search,” Shane Greenstein, an economist and professor at Harvard Business School, told Bloomberg. “At the moment, I doubt AI will move the needle because, in search, you need a flywheel: the more searches you have, the better answers are. Google is the only firm who has this dynamic well-established.”

Yeah, Harvard. Oh, well, the sweatshirts are recognized the world over. Accuracy, trust, and integrity implied too.

Net net: What’s next? Will Microsoft make it even more difficult to use another outfit’s search system., you may be headed for the abattoir., you will face your end.

Stephen E Arnold, January 25, 2024

The Click Derbies: Strong Runners Take the Lead

December 12, 2023

green-dino_thumb_thumb_thumbThis essay is the work of a dumb dinobaby. No smart software required.

Two unrelated reports about user behavior strike me as important.

The first is data from Pew Research about teens and social media. Are the data “new”? The phrase about “almost constant” usage is like the decision regarding Google as a monopoly. Obvious behavior is difficult to overlook.

Teens, Social Media and Technology” reports some allegedly accurate data I find suggestive; for example:

  • 90 percent of teenagers use YouTube. There are no data about what the teens watch; for example transparent clothing, how to be healthy, or videos about 19th century philosophers
  • TikTok reaches 70 percent of teens in the 15 to 17 year old demographic. These are tomorrow’s leaders in business, technology, and medical research who will have fine tuned their attention spans to the world of short, jazzy video
  • Facebook’s share of teens is now in the 30 percent range and the “improved” Twitter are apparently losing some of their magnetic appeal.

The surprising factoids concern the 20 percent of the teens in the sample who use TikTok and YouTube “almost constantly.” The share of teens who say they are online with social media almost constantly has almost doubled in the last seven years. How much time remains to do homework? That question is not answered, but test scores suggest, “Not too much” for some teens.


A young and sprightly Temu is making the older runners look like losers. Thanks, MSFT Copilot. Good enough again.

The research report states:

Larger shares of Black and Hispanic teens report being on YouTube, Instagram and TikTok almost constantly, compared with a smaller share of White teens who say the same. Hispanic teens stand out in TikTok and Snapchat use. For instance, 32% of Hispanic teens say they are on TikTok almost constantly, compared with 20% of Black teens and 10% of White teens.

Social media and social media access are essentially unregulated by parents, educational institutions, and the government. Allowing teens to immerse themselves in streams of digital content may have some short term and long term downsides. Perhaps it is too late to reverse the corrosive effects of these information streams? I don’t want to be a Negative Ned, so I will say, “Of course not.”

The second report is about Temu, which allegedly has some connections to the Middle Kingdom. “Shoppers Spend Almost Twice as Long on Temu App Than Key Rivals” contains data which may or may not be spot on. Nevertheless, let’s look at what the article reports from an outfit called Apptopia:

On average, users spent 18 minutes per day on the Temu app in the second quarter, compared with 10 minutes for Amazon and 11 minutes for Alibaba Group Holding Ltd.’s AliExpress, based on Apptopia’s device-level analysis. Among younger users, the time spent on Temu was 19 minutes, it said.

Let’s assume that the data characterize one behavior: Those in the sample spend more time on the Temu app than on the Amazon service. I want to point out that comparing app usage to the undefined “Amazon” is an issue. Nevertheless, one question pops up: “Amazon, what’s causing users to spend less time on your service?” Maybe Amazon has a better interface so a person can find a product more quickly. Maybe Amazon’s crazy quilt of prices turn people off? Maybe the magical “price changes” cause individuals like me to report that bait-and-witch methods are possibly in use? Maybe people see an Amazon price for something manufactured somewhere far from Toledo, and think, “I will look elsewhere, get a better price, and ignore Toledo (a charming city).

The article points to a different reason; to wit:

The addictive app is core to the strategy. It allows users to play games to win rewards, including spinning a roulette-like wheel to win a coupon — which goes up in value if you buy something within 10 minutes. The Temu app is available in more than 40 countries, though none have taken to it like customers in the US, where it’s Apple Inc.’s top app most days this year and sales have well and truly surpassed bargain-shopping giant Shein.

I interpret this to mean: Amazon is behind the times, overly bureaucratic, reacting to AI by trying to support every AI solution, and worrying about its regulator friends in Washington and Brussels.

Net net: On one hand we have an ideal conduit to deliver weaponized information to young people. On the other, we have once-nimble US companies watching Temu score goals.

Stephen E Arnold, December 12, 2023

Next Page »

  • Archives

  • Recent Posts

  • Meta