After AI Billions, a Hail, Mary Play

November 19, 2024

Now it is scramble time. Reuters reports, “OpenAI and Others Seek New Path to Smarter AI as Current Methods Hit Limitations.” Why does this sound familiar? Perhaps because it is a replay of the enterprise search over-promise and under-deliver approach. Will a new technique save OpenAI and other firms? Writers Krystal Hu and Anna Tong tell us:

“After the release of the viral ChatGPT chatbot two years ago, technology companies, whose valuations have benefited greatly from the AI boom, have publicly maintained that ‘scaling up’ current models through adding more data and computing power will consistently lead to improved AI models. But now, some of the most prominent AI scientists are speaking out on the limitations of this ‘bigger is better’ philosophy. … Behind the scenes, researchers at major AI labs have been running into delays and disappointing outcomes in the race to release a large language model that outperforms OpenAI’s GPT-4 model, which is nearly two years old, according to three sources familiar with private matters.”

One difficulty, of course, is the hugely expensive and time-consuming LLM training runs. Another: it turns out easily accessible data is finite after all. (Maybe they can use AI to generate more data? Nah, that would be silly.) And then there is that pesky hallucination problem. So what will AI firms turn to in an effort to keep this golden goose alive? We learn:

“Researchers are exploring ‘test-time compute,’ a technique that enhances existing AI models during the so-called ‘inference’ phase, or when the model is being used. For example, instead of immediately choosing a single answer, a model could generate and evaluate multiple possibilities in real-time, ultimately choosing the best path forward. This method allows models to dedicate more processing power to challenging tasks like math or coding problems or complex operations that demand human-like reasoning and decision-making.”

OpenAI is using this approach in its new O1 model, while competitors like Anthropic, xAI, and Google DeepMind are reportedly following suit. Researchers claim this technique more closely mimics the way humans think. That couldn’t be just marketing hooey, could it? And even if it isn’t, is this tweak really enough?

Cynthia Murrell, November 19, 2024

Comments

Got something to say?





  • Archives

  • Recent Posts

  • Meta