Reddit Search Engines: Some Tweaks Might Be Useful

May 6, 2021

Reddit is a popular and vast social media network. It is also a big disorganized mess. The likelihood of finding a thread you read on the main page three weeks ago is zero to null, unless you happened to make a comment on it. That, however, requires a Reddit account, but not everyone has one. Google and other search engines attempt to locate information on Reddit. Reddit attempts to do the same for itself. Both options have limited results.

Reddit search is a can of worms, much like the web site itself. Information can be found, but it requires a lot of digging. A specialized search algorithm specifically designed to handle the information dump that is Reddit would be the best option. Github hosts a Reddit Search application that does a fair job of locating information, although it has some drawbacks. The search filters are perfect for Reddit, focusing on the author, subreddit, score, dates, search terms, and searching through posts or comments. The more one knows about the post/comment they wish to locate, the better the search application is. However, if searching for basic information on a topic without filling in the subreddit, date span, or author delimiters spits back hundreds of search results.  Reddit Search is similar to how most out of the box search tools function. They work, but need a lot of fine tuning before they are actually useful. Reddit Search does work as long as you have specific information to fill in the search boxes. Otherwise, it only returns semi useful results. The good news is that old Reddit is still available. Hunting remains the name of the game for some online information retrieval tasks.

Whitney Grace, May 6, 2021

Enterprise Search: Please Just Give Users What They Are Searching For

April 30, 2021

Here’s a modest proposal. Be upfront about what “enterprise search” can and cannot do. Nope, will not happen. Enterprise search, like a file manager, is a utility. But those with money bet on enterprise search becoming the next big thing will not admit to the craziness of statements like “index all your information.” All? Yeah, violate privacy, health information regulations, secrets related to acquisitions, etc.

Where is enterprise search? What types of things do the builders of enterprise search consider? CIO Applications gives us some insight in its write-up, “Five Important Features of Enterprise Search Platform.” To hear them tell it, it is all about the UI. We’re informed:

“Enterprise search platforms should have a world-class user interface (UI) that makes it simple and stress-free for users and allows for an excellent user experience. Organizations today face unimaginable volumes of unstructured data, necessitating the creation of an efficient enterprise search platform. An enterprise search tool aids in the analysis and interpretation of organizational data. It assists a company in making better strategic decisions and gaining a competitive advantage.”

According to the post, the five key features include data security, user friendliness, scalability, flexibility & customization, and search analytics. We feel this assessment is off the mark. Lipstick on a pig does not capture the cosmeticizing of a basic function.  Aside from security, these components are perks that should be considered after the core requirement is met—employees have to be able to find what they seek. Unfortunately, most enterprise search systems fall short on search itself. The rest are just bells and whistles to distract from that reality. Keep in mind that in order for a person to locate a PowerPoint with the changes a slightly out of control sales professional made to close a big deal with a new customers more than enterprise search is needed. How does one make search in an enterprise work? How about wave hands, chant AI AI AI, and close the deal with a faked demo? This has worked for many search vendors for many years.

Cynthia Murrell, April 30, 2021

Works Great But Google Upgrades Android Device Search

April 29, 2021

It goes without question that Android mobile devices are superior when it comes to battery longevity and cost. Apple mobile devices are only better when it comes to communication between other Apple products and a universal device search. Slash Gear shares that Android is finally getting a long needed upgrade: “Android Third-Party Launchers Might Finally Get Universal Device Search.”

Universal device search is an out-of-the-box feature for all Microsoft and Apple products, but Android-based OS were left without the option to search everything. Sure, they could download the Google Search app to get this option, but out was only limited to the Pixel launcher and Google Search home screen widget. In other words, it did not even compare to MacOS Spotlight nor Windows Search.

Third-party Android developers were left little to compete with, but Android 12 could finally resolve the debacle. The Android 12 OS has an AppSearchManager API that offers universal search, but it is currently only in preview mode:

“This is definitely good news for developers of the myriad Android launchers available as it at least takes them one step closer to the functionality previously exclusive to Google’s own. At the moment, however, it doesn’t seem to be available just yet and it might be too early to invest in it until the final version lands in Android 12 beta.”

It is ironic that the supreme search giant Google does not offer a universal search comparable to Spotlight or Windows Search. Google is supposed to be the best search engine in the world, so why does it like a basic search function on its mobile devices? And the “universal” thing, please.

Whitney Grace, April 29, 2021

The Internet Archive Dons a Scholar Skin

April 23, 2021

Some of today’s biggest social faux pas are believing everything on the Internet, clicking the first link in search results, and buying items from questionable Internet ads. It is easy to forget that search engines like Google and Bing are for-profit search engines that put paid links at the top of search results. What is even worse is scientific and scholarly information is locked behind expensive paywalls.

Wikipedia is often believed to be a reliable source, but despite the dedication of wiki editors the encyclopedia is not 100% accurate. There are free scholarly databases and newspapers often have their archives online, but that information is not widely known.

Thankfully the Internet Archive is fairly famous. The Internet Archive is a non-profit digital library that provides users with access to millions of free books, music, Web sites, videos, and software. They also allow users to peruse old Web sites with the Wayback Machine.

The Internet Archive recently introduced a brand new service that is sheer genius: Internet Archive Scholar. It is described as:

“This full text search index includes over 25 million research articles and other scholarly documents preserved in the Internet Archive. The collection spans from digitized copies of eighteenth century journals through the latest Open Access conference proceedings and pre-prints crawled from the World Wide Web.”

Why did no one at the Internet Archive think of doing this before? It is a brilliant idea that localizes millions of scholarly articles and other information without paywalls, university matriculation, or a library card. Most of the information available through the Internet Archive Scholar would otherwise remain buried in Google search results or on the Web, like old books gathering dust on library shelves.

Internet Archive Scholar is still in the beta phase and enhancements are a positive step.

Whitney Grace, April 23, 2021

Search Tips: Ideal for the Thumbtyper in a Hurry

April 21, 2021

Finding information is “easy.” Some systems display information before you search for it. A mobile with the time and temperature displayed are examples. Maybe you want to locate a source for flowering Chinese cabbage? Plug the phrase into Bing, Google, Qwant, and Yandex? Bingo super relevant, timely results. Works every time.

If you want to locate information germane to a topic like loss of coolant accident or octonitrocubane, you may need to use a different approach. To get some tips on locating high value, useful information navigate to “Internet Search Tips.” The write up beats the drum for the Internet Archive. That’s okay.

Useful but probably not suitable for those who are into “good enough” results, a category which includes some YouTube stars, most MBAs, and sadly some of the more recent graduates of information science programs.

Stephen E Arnold, April 21, 2021

Google Stop Words: Close Enough for the Mom and Pop Online Ad Vendor

April 15, 2021

I remember from a statistics lecture given by a fellow named Dr. Peplow maybe that fuzzy is one of the main characteristics of statistics. The idea is that a percentage is not a real entity; for example, the average number of lions in a litter is three, give or take a couple of the magnets for hunters and poachers. Depending upon the data set, the “real” number maybe 3.2 cubs in a litter. Who has ever seen a fractional lion? Certainly not me.

Why am I thinking fuzzy? Google is into data. The company collects, counts, and transform “real” data into actions. Whip in some smart software, and the company has processes which transform an advertiser’s need to reach eyeballs with some statistically validated interest in whatever the Mad Ave folks are trying to sell.

Google Has a Secret Blocklist that Hides YouTube Hate Videos from Advertisers—But It’s Full of Holes” suggests that some of the Google procedures are fuzzy. The uncharitable might suggest that Google wants to get close enough to collect ad money. Horse shoe aficionados use the phrase “close enough for horse shoes” to indicate a toss which gets a point or blocks an opponent’s effort. That seems to be one possible message from the Mark Up article.

I noted this passage in the essay:

If you want to find YouTube videos related to “KKK” to advertise on, Google Ads will block you. But the company failed to block dozens of other hate and White nationalist terms and slogans, an investigation by The Markup has found. Using a list of 86 hate-related terms we compiled with the help of experts, we discovered that Google uses a blocklist to try to stop advertisers from building YouTube ad campaigns around hate terms. But less than a third of the terms on our list were blocked when we conducted our investigation.

What seems to be happening is that Google’s methods for taking a term and then “broadening” it so that related terms are identified is not working. The idea is that related terms with a higher “score” are more directly linked to the original term. Words and phrases with lower “scores” are not closely related. The article uses the example of the term KKK.

I learned:

Google Ads suggested millions upon millions of YouTube videos to advertisers purchasing ads related to the terms “White power,” the fascist slogan “blood and soil,” and the far-right call to violence “racial holy war.” The company even suggested videos for campaigns with terms that it clearly finds problematic, such as “great replacement.” YouTube slaps Wikipedia boxes on videos about the “the great replacement,” noting that it’s “a white nationalist far-right conspiracy theory.” Some of the hundreds of millions of videos that the company suggested for ad placements related to these hate terms contained overt racism and bigotry, including multiple videos featuring re-posted content from the neo-Nazi podcast The Daily Shoah, whose official channel was suspended by YouTube in 2019 for hate speech.

It seems to me that Google is filtering specific words and phrases on a stop word list. Then the company is not identifying related terms, particularly words which are synonyms for the word on the stop list.

Is it possible that Google is controlling how it does fuzzification. In order to get clicks and advertising, Google blocks specifics and omits the term expansion and synonym identification settings to eliminate the words and phrases identified by the Mark Up’s investigative team?

These references to synonym expansion and reference to query expansion are likely to be unfamiliar to some people. Nevertheless, fuzzy is in the hands of those who set statistical thresholds.

Fuzzy is not real, but the search results are. Ad money is a powerful force in some situations. The article seems to have uncovered a couple of enlightening examples. String matching coupled with synonym expansion seem to be out of step. Some fuzzification may be helpful in the hate speech methods.

Stephen E Arnold, April 12, 2021

An Exploration of Search Code

April 9, 2021

Software engineer Bard de Geode posts an exercise in search coding on his blog—“Building a Full-Text Search Engine in 150 Lines of Python Code.” He has pared down the thousands and thousands of lines of code found in proprietary search systems to the essentials. Of course, those platforms have many more bells and whistles, but this gives one an idea of the basic components. Navigate to the write-up for the technical details and code snippets that I do not pretend to follow completely. The headings de Geode walks us through include Data, Data preparation, Indexing, Analysis, Indexing the corpus, Searching, Relevancy, Term frequency, and Inverse document frequency. He concludes:

“You can find all the code on Github, and I’ve provided a utility function that will download the Wikipedia abstracts and build an index. Install the requirements, run it in your Python console of choice and have fun messing with the data structures and searching. Now, obviously this is a project to illustrate the concepts of search and how it can be so fast (even with ranking, I can search and rank 6.27m documents on my laptop with a ‘slow’ language like Python) and not production grade software. It runs entirely in memory on my laptop, whereas libraries like Lucene utilize hyper-efficient data structures and even optimize disk seeks, and software like Elasticsearch and Solr scale Lucene to hundreds if not thousands of machines. That doesn’t mean that we can’t think about fun expansions on this basic functionality though; for example, we assume that every field in the document has the same contribution to relevancy, whereas a query term match in the title should probably be weighted more strongly than a match in the description. Another fun project could be to expand the query parsing; there’s no reason why either all or just one term need to match.”

Fore more information, de Geode recommends curious readers navigate to MonkeyLearn’s post “What is TF-IDF?” and to an explanation of “Term Frequency and Weighting” posted by Stanford’s NLP Group. Happy coding.

Cynthia Murrell, April 9, 2021

Microsoft Adds Semantic Search to Azure Cognitive Search: Is That Fast?

April 9, 2021

Microsoft is adding new capabilities to its cloud-based enterprise search platform Azure Cognitive Search, we learn from “Microsoft Debuts AI-Based Semantic Search on Azure” at Datanami. We’re told the service offers improved development tools. There is also a “semantic caption” function that identifies and displays a document’s most relevant section. Reporter George Leopold writes:

“The new semantic search framework builds on Microsoft’s AI at Scale effort that addresses machine learning models and the infrastructure required to develop new AI applications. Semantic search is among them. The cognitive search engine is based on the BM25 algorithm, (as in ‘best match’), an industry standard for information retrieval via full-text, keyword-based searches. This week, Microsoft released semantic search features in public preview, including semantic ranking. The approach replaces traditional keyword-based retrieval and ranking frameworks with a ranking algorithm using deep neural networks. The algorithm prioritizes search results based on how ‘meaningful’ they are based on query relevance. Semantics-based ranking ‘is applied on top of the results returned by the BM25-based ranker,’ Luis Cabrera-Cordon, group program manager for Azure Cognitive Search, explained in a blog post. The resulting ‘semantic answers’ are generated using an AI model that extracts key passages from the most relevant documents, then ranks them as the sought-after answer to a query. A passage deemed by the model to be the most likely to answer a question is promoted as a semantic answer, according to Cabrera-Cordon.”

By Microsoft’s reckoning, the semantic search feature represents hundreds of development years and millions of dollars in compute time by the Bing search team. We’re told recent developments in transformer-based language models have also played a role, and that this framework is among the first to apply the approach to semantic search. There is one caveat—right now the only language the platform supports is US English. We’re told that others will be added “soon.” Readers who are interested in the public preview of the semantic search engine can register here.

Cynthia Murrell, April 9, 2021

Autonomy: Some Search History

April 6, 2021

I want to offer a happy quack to The Register, an online information service, for links to Autonomy documents. The slow moving legal carnival train is nearing its destination. “Everything You Need to Know about the HPE v Mike Lynch High Court Case” provides a useful summary of the trial. In addition, the article includes links to a number of fascinating documents. These provide some helpful insights into the challenges vendors of enterprise search and content processing systems face. Furthermore, the documents make clear that enterprise software can be a business challenge. The sales cycle is difficult. Installing and optimizing the software are challenges. Plus keeping the customer’s expectations for a solution in line with the realities of the solution often require the intellectual skills of big time wizards. Why are these documents relevant in 2021?

First, some vendors of search and content processing systems ignore the realities exposed in these documents.

Second, today’s customers are fooled by buzzwords and well crafted demonstrations. The actual system may be “different.”

Third, the users of today’s systems are likely to find themselves struggling to locate and make sense of information they know is available in the organization.

But marketing and complex interactions among software and service vendors and their partners are fascinating. Are similar practices in play today?

That’s an interesting question to consider.

Stephen E Arnold, April 6, 2021

Google Ad King Assembles Ad Free Search Engine

April 5, 2021

The heart of Google’s revenue is targeted ads. Despite the tech giant’s code of conduct, the company became a profit-driven corporate beast. Sridhar Ramaswamy was once Google’s advertising king, but he became disillusioned with the corporate beast. His biggest qualms were how Google’s obsessions with growth affected everything in the company, including user privacy and search quality.

Maybe Ramaswamy was inspired by DuckDuckGo when he decided to build a new search engine without ads and data tracking. Forbes details Ramaswamy’s career move in the article, “After Building Google’s Advertising Business, This Founder Is Creating An Ad-Free Alternative.”

His new search engine is called Neeva and his fellow Google cofounder Vivek Raghunathan invested in the new search startup. Instead of relying on ad revenue, Ramaswamy wants Neeva to be subscription based. His plan is for users to pay $5-10 a month to see non-sponsored search results.

Privacy is a major concern for users and the current Internet of things is hardly secure. Neeva comes at a time when users are demanding better regulations and better technology securing their information. There could also be a growing demand for unpolluted search results. Larry Page and Sergey Brin even wrote in their famous Stanford research paper that search engines driven by ad revenue will not ultimately meet consumers’ needs, because they will be biased by advertisements.

Neeva already has many investors, but tech experts doubt it will do much damage to Google:

“Search engine experts doubt Neeva will be able to do much damage to Google, at least in the short term. Some say Google’s gravitational pull is too strong for users to leave. Arun Kumar, CTO at Interpublic Group of Companies, Inc. a New York-based advertising holding company, says while Neeva might ‘find a few takers, but you’re not going to shake the kingdom.’”

Money is the driving force behind Google and user’s needs. Why pay for something when it is free in other places-biased or not?

Whitney Grace, April 5, 2021

« Previous PageNext Page »

  • Archives

  • Recent Posts

  • Meta