Chinese Restaurant Names as Journalism
April 19, 2016
I read an article in Jeff Bezos’ newspaper. The title was “We Analyzed the Names of Almost Every Chinese Restaurant in America. This Is What We Learned.” The almost is a nifty way of slip sliding around the sampling method which used restaurants listed in Yelp. Close enough for “real” journalism.
Using the notion of a frequency count, the write up revealed:
- The word appearing most frequently in the names of the sample was “restaurant.”
- The words “China” and “Chinese” appear in about 15,000 of the sample’s restaurant names
- “Express” is a popular word, not far ahead of “panda”.
The word list and their frequencies were used to generate a word cloud:
To answer the question where Chinese food is most popular in the US, the intrepid data wranglers at Jeff Bezos’ newspaper output a map:
Amazing. I wonder if law enforcement and intelligence entities know that one can map data to discover things like the fact that the word “restaurant” is the most used word in a restaurant’s name.
Stephen E Arnold, April 19, 2016
Content Marketers at Risk
April 19, 2016
I read “Goldman Sachs Leads a $30 million Round for Persado’s AI-Based, Automated Copywriting Service.” My first reactions:
- Search engine optimization wizards will have a tool to increase the flow of baloney search and content marketing to people who write blogs
- Journalists, who have been subject to reduction in force actions, may face fierce competition from a smart software
- Teachers of college composition will have a tough time figuring out if the student essays are coming from fraternity and sorority reference files or from a cloud based writing service.
According to the write up, the service is a “cognitive one.” Poor IBM. The company wants Watson to be the cognitive champion. Now an outfit which uses software to create articles has embraced the concept. I noted:
The company [Persado] has cataloged 1 million words and phrases that marketers use in their copy, and scored those words based on sentiment analysis and the structure of marketing pitches defined by a message’s format, linguistic structure, description, emotional language, and its actual call to action. The software can create a message, optimize its language, and then translate that message into any of 23 language…
There is a bright side. IBM could purchase Persado and then use the system to flog its confection of Lucene, acquired technology, and home brew code into a system which tirelessly promotes IBM.
Stephen E Arnold, April 19, 2016
What Is the Potential of Social Media?
April 11, 2016
Short honk. I read “How to Hack an Election.” The write up reports that a person was able to rig elections. According to the story:
For $12,000 a month, a customer hired a crew that could hack smartphones, spoof and clone Web pages, and send mass e-mails and texts. The premium package, at $20,000 a month, also included a full range of digital interception, attack, decryption, and defense. The jobs were carefully laundered through layers of middlemen and consultants.
Worth reading and then considering this question:
What are the implications of weaponized information?
Are pundits, mavens, self appointed experts, and real journalists on the job and helping to ensure that information online is “accurate”?
Stephen E Arnold, April 11, 2016
Machine Learning: 10 Numerical Recipes
April 8, 2016
The chatter about smart is loud. I cannot hear the mixes on my Creamfields 2014 CD. Mozart, you are a goner.
If you want to cook up some smart algorithms to pick music or drive your autonomous vehicle without crashing into a passenger carrying bus, navigate to “Top 10 Machine Learning Algorithms.”
The write up points out that just like pop music, there is a top 10 list. More important in my opinion is the concomitant observation that smart software may be based on a limited number of procedures. Hey, this stuff is taught in many universities. Go with what you know maybe?
What are the top 10? The write up asserts:
- Linear regression
- Logistic regression
- Linear discriminant analysis
- Classification and regression trees
- Naive Bayes
- K nearest neighbors
- Learning vector quantization
- Support vector machines
- Bagged decision trees and random forest
- Boosting and AdaBoost.
The article tosses in a bonus too: Gradient descent.
What is interesting is that there is considerable overlap with the list I developed for my lecture on manipulating content processing using shaped or weaponized text strings. How’s that, Ms. Null?
The point is that when systems use the same basic methods, are those systems sufficiently different? If so, in what ways? How are systems using standard procedures configured? What if those configurations or “settings” are incorrect?
Exciting.
Stephen E Arnold, April 8, 2016
ThomsonReuters: Palantir Not Enough Math?
April 6, 2016
I read “TRRI Users Will Gain Access to FiscalNote’s Legislative Modeling Techniques.” The licensees of Palantir Metropolitan and the owner of Westlaw smart software for legal eagles is pushing into new territory. That’s probably good news for stakeholders who have watch ThomsonReuters bump into a bit of a revenue ceiling in the last few years.
According to the write up:
The main benefit of the agreement [with FiscalNote] will grant Thomson Reuters’ Regulatory Intelligence (TRRI) newly extended capabilities across its predictive legislative analytics. TRRI is a global solution that helps clients focus and leverage their regulatory risk. Per the agreement, FiscalNote will help provide TRRI users with likelihood factors and other insights relegated to specifics pieces of legislative passage.
Interesting. I assumed that Palantir’s platform would have the extensibility to handle this type of content processing and analysis. Wrong again.
I learned:
FiscalNote utilizes machine learning and natural language processing in its modeling techniques that help it engineer models to conduct a host of analyses on open government data. In essence, these models allow FiscalNote to automatically analyze how legislation is going to yield any material impact via a combination of factors such as legislators, committee assignments, actions taken, bill versions, and amendments.
Wait, wait, don’t tell me. Westlaw’s smart software which can do many wonderful advanced text processing tricks is not able to perform in the manner of FiscalNote.
My hunch is that the deal has less to do with technologies, extensible or not, and more to do with getting some customers and an opportunity to find a way to pump up those revenues. Another idea: Is ThomsonReuters emulating IBM’s tactic of buying duplicative technology as a revenue rocket booster?
Perhaps Palantir and Westlaw should team up so ThomsonReuters’ customers have additional choices? Think of the XML slicing and dicing strategy with the intelligence and legal technology working in harmony.
Stephen E Arnold, April 6, 2016
Patents and Semantic Search: No Good, No Good
March 31, 2016
I have been working on a profile of Palantir (open source information only, however) for my forthcoming Dark Web Notebook. I bumbled into a video from an outfit called ClearstoneIP. I noted that ClearstoneIP’s video showed how one could select from a classification system. With every click,the result set changed. For some types of searching, a user may find the point-and-click approach helpful. However, there are other ways to root through what appears to be patent applications. There are the very expensive methods happily provided by Reed Elsevier and Thomson Reuters, two find outfits. And then there are less expensive methods like Alphabet Google’s odd ball patent search system or the quite functional FreePatentsOnline service. In between, you and I have many options.
None of them is a slam dunk. When I was working through the publicly accessible Palantir Technologies’ patents, I had to fall back on my very old-fashioned method. I tracked down a PDF, printed it out, and read it. Believe me, gentle reader, this is not the most fun I have ever had. In contrast to the early Google patents, Palantir’s documents lack the detailed “background of the invention” information which the salad days’ Googlers cheerfully presented. Palantir’s write ups are slogs. Perhaps the firm’s attorneys were born with dour brain circuitry.
I did a side jaunt and came across a white paper from ClearstoneIP called “Why Semantic Searching Fails for Freedom-to-Operate (FTO).”i The 12 page write up is from a company called ClearstoneIP, which is a patent analysis company. The firm’s 12 pager is about patent searching. The company, according to its Web site is a “paradigm shifter.” The company describes itself this way:
ClearstoneIP is a California-based company built to provide industry leaders and innovators with a truly revolutionary platform for conducting product clearance, freedom to operate, and patent infringement-based analyses. ClearstoneIP was founded by a team of forward-thinking patent attorneys and software developers who believe that barriers to innovation can be overcome with innovation itself.
The “freedom to operate” phrase is a bit of legal jargon which I don’t understand. I am, thank goodness, not an attorney.
The firm’s search method makes much of the ontology, taxonomy, classification approach to information access. Hence, the reason my exploration of Palantir’s dynamic ontology with objects tossed ClearstoneIP into one of my search result sets.
The white paper is interesting if one works around the legal mumbo jumbo. The company’s approach is remarkable and invokes some of my caution light words; for example:
- “Not all patent searches are the same.”, page two
- “This all leads to the question…”, page seven
- “…there is never a single “right” way to do so.”, page eight
- “And if an analyst were to try to capture all of the ways…”, page eight
- “to capture all potentially relevant patents…”, page nine.
The absolutist approach to argument is fascinating.
Okay, what’s the ClearstoneIP search system doing? Well, it seems to me that it is taking a path to consider some of the subtlties in patent claims’ statements. The approach is very different from that taken by Brainware and its tri-gram technology. Now that Lexmark owns Brainware, the application of the Brainware system to patent searching has fallen off my radar. Brainware relied on patterns; ClearstoneIP uses the ontology-classification approach.
Both are useful in identifying patents related to a particular subject.
What is interesting in the write up is its approach to “semantics.” I highlighted in billable hour green:
Anticipating all the ways in which a product can be described is serious guesswork.
Yep, but isn’t that the role of a human with relevant training and expertise becomes important? The white paper takes the approach that semantic search fails for the ClearstoneIP method dubbed FTO or freedom to operate information access.
The white paper asserted:
Semantic
Semantic searching is the primary focus of this discussion, as it is the most evolved.
ClearstoneIP defines semantic search in this way:
Semantic patent searching generally refers to automatically enhancing a text -based query to better represent its underlying meaning, thereby better identifying conceptually related references.
I think the definition of semantic is designed to strike directly at the heart of the methods offered to lawyers with paying customers by Lexis-type and Westlaw-type systems. Lawyers to be usually have access to the commercial-type services when in law school. In the legal market, there are quite a few outfits trying to provide better, faster, and sometimes less expensive ways to make sense of the Miltonesque prose popular among the patent crowd.
The white paper, in a lawyerly way, the approach of semantic search systems. Note that the “narrowing” to the concerns of attorneys engaged in patent work is in the background even though the description seems to be painted in broad strokes:
This process generally includes: (1) supplementing terms of a text-based query with their synonyms; and (2) assessing the proximity of resulting patents to the determined underlying meaning of the text – based query. Semantic platforms are often touted as critical add-ons to natural language searching. They are said to account for discrepancies in word form and lexicography between the text of queries and patent disclosure.
The white paper offers this conclusion about semantic search:
it [semantic search] is surprisingly ineffective for FTO.
Seems reasonable, right? Semantic search assumes a “paradigm.” In my experience, taxonomies, classification schema, and ontologies perform the same intellectual trick. The idea is to put something into a cubby. Organizing information makes manifest what something is and where it fits in a mental construct.
But these semantic systems do a lousy job figuring out what’s in the Claims section of a patent. That’s a flaw which is a direct consequence of the lingo lawyers use to frame the claims themselves.
Search systems use many different methods to pigeonhole a statement. The “aboutness” of a statement or a claim is a sticky wicket. As I have written in many articles, books, and blog posts, finding on point information is very difficult. Progress has been made when one wants a pizza. Less progress has been made in finding the colleagues of the bad actors in Brussels.
Palantir requires that those adding content to the Gotham data management system add tags from a “dynamic ontology.” In addition to what the human has to do, the Gotham system generates additional metadata automatically. Other systems use mostly automatic systems which are dependent on a traditional controlled term list. Others just use algorithms to do the trick. The systems which are making friends with users strike a balance; that is, using human input directly or indirectly and some administrator only knowledgebases, dictionaries, synonym lists, etc.
ClearstoneIP keeps its eye on its FTO ball, which is understandable. The white paper asserts:
The point here is that semantic platforms can deliver effective results for patentability searches at a reasonable cost but, when it comes to FTO searching, the effectiveness of the platforms is limited even at great cost.
Okay, I understand. ClearstoneIP includes a diagram which drives home how its FTO approach soars over the competitors’ systems:
ClearstoneIP, © 2016
My reaction to the white paper is that for decades I have evaluated and used information access systems. None of the systems is without serious flaws. That includes the clever n gram-based systems, the smart systems from dozens of outfits, the constantly reinvented keyword centric systems from the Lexis-type and Westlaw-type vendor, even the simplistic methods offered by free online patent search systems like Pat2PDF.org.
What seems to be reality of the legal landscape is:
- Patent experts use a range of systems. With lots of budget, many fee and for fee systems will be used. The name of the game is meeting the client needs and obviously billing the client for time.
- No patent search system to which I have been exposed does an effective job of thinking like an very good patent attorney. I know that the notion of artificial intelligence is the hot trend, but the reality is that seemingly smart software usually cheats by formulating queries based on analysis of user behavior, facts like geographic location, and who pays to get their pizza joint “found.”
- A patent search system, in order to be useful for the type of work I do, has to index germane content generated in the course of the patent process. Comprehensiveness is simply not part of the patent search systems’ modus operandi. If there’s a B, where’s the A? If there is a germane letter about a patent, where the heck is it?
I am not on the “side” of the taxonomy-centric approach. I am not on the side of the crazy semantic methods. I am not on the side of the keyword approach when inventors use different names on different patents, Babak Parviz aliases included. I am not in favor of any one system.
How do I think patent search is evolving? ClearstoneIP has it sort of right. Attorneys have to tag what is needed. The hitch in the git along has been partially resolved by Palantir’’-type systems; that is, the ontology has to be dynamic and available to anyone authorized to use a collection in real time.
But for lawyers there is one added necessity which will not leave us any time soon. Lawyers bill; hence, whatever is output from an information access system has to be read, annotated, and considered by a semi-capable human.
What’s the future of patent search? My view is that there will be new systems. The one constant is that, by definition, a lawyer cannot trust the outputs. The way to deal with this is to pay a patent attorney to read patent documents.
In short, like the person looking for information in the scriptoria at the Alexandria Library, the task ends up as a manual one. Perhaps there will be a friendly Boston Dynamics librarian available to do the work some day. For now, search systems won’t do the job because attorneys cannot trust an algorithm when the likelihood of missing something exists.
Oh, I almost forget. Attorneys have to get paid via that billable time thing.
Stephen E Arnold, March 30, 2016
Attensity Europe Has a New Name
March 30, 2016
Short honk: The adventure of Attensity continues. Attensity Europe has renamed itself Sematell Interactive Solutions. You can read about the change here. The news release reminds the reader that Sematell is “the leading provider of interaction solutions.” I am not able to define interaction solutions, but I assume the company named by combining semantic and intelligence will make the “interaction solutions” thing crystal clear. The url is www.sematell.de.
Stephen E Arnold, March 30, 2016
Content Analyst Sold to kCura
March 30, 2016
kCura, an e-discovery company, purchased Content Analyst. Content Analyst was a spin out from a Washington, DC consulting and services firm. According to “kCura Acquires Content Analyst Company, Developers of High-Performance Advanced Text Analytics Technologies”
Content Analyst’s analytics engine has been fully integrated into Relativity Analytics for eight years, supporting a wide range of features that are flexible enough to handle the needs of any type or size of case — everything from organizing unstructured data to email threading to categorization that powers flexible technology-assisted review workflows….By joining teams, kCura will bring Content Analyst’s specialized engineering talent closer to Relativity users, in order to continue building a highly scalable analytics solution even faster.
Content Analytics performs a number of text processing functions, including entity extraction and concept identification for metatagging text. When the initial technology was developed by the DC firm specializing in intelligence and related work for the US government, the system captured the attention of the intelligence community. The systems and methods used by Content Analyst remain useful.
Unlike some text processing companies, Content Analyst focused on legal e-discovery. kCura is the new Content Analyst. What company will acquire Recommind?
Stephen E Arnold, March 30, 2016
Expert System Does a Me Too Innovation
March 29, 2016
Years ago I was a rental to an outfit called i2 Group in the UK. Please, don’t confuse the UK i2 with the ecommerce i2 which chugged along in the US of A.
The UK i2 had a product called Analysts Notebook. At one time it was basking in a 95 percent share of the law enforcement and intelligence market for augmented investigatory software. Analysts Notebook is still alive and kicking in the loving arms of IBM.
I thought of the vagaries of product naming when I read “Expert System USA Launches Analysts’ Workspace.”
According to the write up:
Analysts’ Workspace features comprehensive enterprise search and case management software integrated with a customizable semantic engine. It incorporates a sophisticated and efficient workflow process that enables team-wide collaboration and rapid information sharing. The product includes an intuitive dashboard allowing analysts to monitor, navigate, and access information using different taxonomies, maps, and worldviews, as well as intelligent workflow features specifically designed to proactively support analysts and investigators in the different phases of their activities.
The lingo reminds me of the early i2 Group marketing collateral. The terminology has surfaced in some of Palantir’s marketing statements and, quite recently, in the explanation of the venture funded Digital Shadows’ service.
I love me-too products. Where would one be if Mozart had not heard and remembered the note sequences of other composers.
Now the trick will be to make some money. Mozart, though a very good me too innovator, struggled in that department. Expert System, according to Google Finance, is going to have to find a way to keep that share price climbing. Today’s (March 22, 2016) share price is in penny stock territory:
Stephen E Arnold, March 29, 2016
Not So Weak. Right, Watson?
March 25, 2016
I read an article which provided to be difficult to find. None of my normal newsreaders snagged the write up called “The Pentagon’s Procurement System Is So Broken They Are Calling on Watson.” Maybe it is the singular Pentagon hooked with the plural pronoun “they”? Hey, dude, colloquial writing is chill.
Perhaps my automated systems’ missing the boat was the omission of the three impressive letters “IBM”? If you follow the activities of US government procurement, you may want to note the article. If you are tracking the tension between IBM i2 and Palantir Technologies, the article adds another flagstone to the pavement that IBM is building to support it augmented intelligence activities in the Department of Defense and other US government agencies.
Let me highlight a couple of comments in the write up and leave you to explore the article at whatever level you choose. I noted these “reports”:
The Air Force is currently working with two vendors, both of which have chosen Watson, IBM’s cognitive learning computer, to develop programs that would harness artificial intelligence to help businesses and government acquisitions officials work through the mind-numbing system.
The write up identifies one of the vendors working on IBM Watson for the US Air Force. The company is Applied Research.
I circled this quote: “The Pentagon’s procurement system is the “perfect application for Watson.”
The goslings and I love “perfect” applications.
How does Watson learn about procurement? The approach is essentially the method used in the mid 1990s by Autonomy IDOL. Here’s a passage I highlighted:
But first Watson must be trained. The first step is to feed it all the relevant documents. Then its digital intellect will be molded by humans, asking question after question, about 5,000 in all, to help understand context and the particular nuance that comes with federal procurement law.
How does this IBM deal fit into the Palantir versus IBM interaction? That’s a good question. What is clear is that the US Air Force has embraced a solution which includes systems and methods first deployed two decades ago.
What’s that about the pace of technology?
Stephen E Arnold, March 25, 2016