Garbling the Natural Language Processors
December 30, 2014
Natural language processing is becoming a popular analytical tool as well as a quicker way for search and customer support. Dragon Nuance is at the tip of everyone’s tongue when NLP enters a conversation, but there are other products with their own benefits. Code Project recently reviewed three of NLP in, ”A Review Of Three Natural Language Processors, AlchemyAPI, OpenCalais, And Semantria.”
Rather than sticking readers with plain product reviews, Code Project explains what NLP is used for and how it accomplishes it. While NLP is used for vocal commands, it can do many other things: improve SEO, knowledge management, text mining, text analytics, content visualization and monetization, decision support, automatic classification, and regulatory compliance. NLP extracts entities aka proper nouns from content, then classifies, tags, and provides a sentiment score to give each entity a meaning.
In layman’s terms:
“…the primary purpose of an NLP is to extract the nouns, determine their types, and provide some “scoring” (relevance or sentiment) of the entity within the text. Using relevance, one can supposedly filter out entities to those that are most relevant in the document. Using sentiment analysis, one can determine the overall sentiment of an entity in the document, useful for determining the “tone” of the document with regards to an entity — for example, is the entity “sovereign debt” described negatively, neutrally, or positively in the document?”
NLP categorizes the human element in content. Its usefulness will become more apparent in future years, especially as people rely more and more on electronic devices for communication, consumerism, and interaction.
Whitney Grace, December 30, 2014
Sponsored by ArnoldIT.com, developer of Augmentext